Advertisement

Russian Journal of Organic Chemistry

, Volume 51, Issue 6, pp 755–830 | Cite as

1,3-Diketones. Synthesis and properties

  • E. A. ShokovaEmail author
  • J. K. Kim
  • V. V. Kovalev
Review

Abstract

The review generalizes and analyzes published data on the synthesis and chemical transformations of 1,3-diketones over the past 10–15 years.

Keywords

Acetylacetone Dimedone PhMe TsOH TFAA 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kel’in, A.V., Curr. Org. Chem., 2003, vol. 7, no. 16, p. 1691.Google Scholar
  2. 2.
    Kel’in, A.V. and Maioli, A., Curr. Org. Chem., 2003, vol. 7, no. 18, p. 1855.Google Scholar
  3. 3.
    Shchegol’kov, E.V., Burgart, Ya.V., Khudina, O.G., Saloutin, V.I., and Chupakhin, O.N., Russ. Chem. Rev., 2010, vol. 79, no. 1, p. 31.Google Scholar
  4. 4.
    Isakova, V.G., Khlebnikova, T.S., and Lakhvich, F.A., Russ. Chem. Rev., 2010, vol. 79, no. 10, p. 849.Google Scholar
  5. 5.
    Zolotareva, N.V. and Semenov, V.V., Russ. Chem. Rev., 2013, vol. 82, no. 10, p. 964.Google Scholar
  6. 6.
    Bonne, D., Coquerel, Y., Constantieux, T., and Rodriguez, J., Tetrahedron: Asymmetry, 2010, vol. 21, p. 1085.Google Scholar
  7. 7.
    Colombo, M. and Peretto, I., Drug Discovery Today, 2008, vol. 13, p. 677.Google Scholar
  8. 8.
    Hulme, C. and Gore, V., Curr. Med. Chem., 2003, vol. 10, p. 51.Google Scholar
  9. 9.
    Simon, C. and Rodriquez, T., J. Org. Chem., 2004, vol. 24, p. 4957.Google Scholar
  10. 10.
    Wang, D.-J., Xu, B.-P., Wei, X.-H., and Zheng, J., J. Fluorine Chem., 2012, vol. 140, p. 49.Google Scholar
  11. 11.
    Zawadiak, J., Mrzyczek, M., and Piotrowsky, T., Eur. J. Chem., 2011, vol. 2, no. 3, p. 289.Google Scholar
  12. 12.
    Wang, D.-J., Kang, Y.-F., Xu, B.-P., Zheng, J., and Wei, X.-H., Spectrochim. Acta, Part A, 2013, vol. 104, p. 419.Google Scholar
  13. 13.
    Hui, Y.-Y., Shu, H.-M., Hu, H.-M., Song, J., Yao, H.-L., Yang, X.-L., Wu, Q.-R., Yang, M.-L., and Xue, G.-L., Inorg. Chim. Acta, 2010, vol. 363, p. 3238.Google Scholar
  14. 14.
    Wang, H., He, P., Yan, H., Shi, J., and Gong, M., Inorg. Chem. Commun., 2011, vol. 14, p. 1183.Google Scholar
  15. 15.
    Zhang, Z. and Tang, R., J. Mol. Struct., 2012, vol. 1010, p. 116.Google Scholar
  16. 16.
    Lim, D., Fang, F., Zhou, G., and Coltart, D.M., Org. Lett., 2007, vol. 9, p. 4139.Google Scholar
  17. 17.
    Heler, S.T. and Natarajan, S.R., Org. Lett., 2006, vol. 8, p. 2675.Google Scholar
  18. 18.
    Shen, Z., Li, B., Wang, L., and Zhang, Y., Tetrahedron Lett., 2005, vol. 46, p. 8785.Google Scholar
  19. 19.
    Elliot, M.C. and Wordingham, S.V., Synthesis, 2006, p. 1162.Google Scholar
  20. 20.
    Katritzky, A.R. and Pastor, A., J. Org. Chem., 2000, vol. 65, p. 3679.Google Scholar
  21. 21.
    Katritzky, A.R., Pastor, A., Voronkov, M., and Tymoshenko, D., J. Comb. Chem., 2001, vol. 3, p. 167.Google Scholar
  22. 22.
    Katritzky, A.R., Meher, N.K., and Singh, S.K., J. Org. Chem., 2005, vol. 70, p. 7792.Google Scholar
  23. 23.
    Kim, D.K., Shokova, E.A., Tafeenko, V.A., and Kovalev, V.V., Russ. J. Org. Chem., 2014, vol. 50, no. 4, p. 464.Google Scholar
  24. 24.
    Kim, J.K., Shokova, E., Tafeenko, V., and Kovalev, V., Beilstein J. Org. Chem., 2014, vol. 10, p. 2270.Google Scholar
  25. 25.
    Wiles, C., Watts, P., Haswell, S.J., and Pombo-Villar, E., Tetrahedron Lett., 2002, vol. 43, p. 2945.Google Scholar
  26. 26.
    Wiles, C., Watts, P., Haswell, S.J., and Pombo-Villar, E., Chem. Commun., 2002, p. 1034.Google Scholar
  27. 27.
    McCreedy, T., Anal. Chim. Acta, 2001, vol. 427, p. 39.Google Scholar
  28. 28.
    Christensen, P.D., Johnson, S.W.P., McCreedy, T., Skelton, V., and Wilson, N.G., Anal. Commun., 1998, vol. 35, p. 341.Google Scholar
  29. 29.
    Iida, A., Osada, J., Nagase, R., Misaki, T., and Tanabe, Y., Org. Lett., 2007, vol. 9, p. 1859.Google Scholar
  30. 30.
    Katritzky, A.R., Wang, Z., Wang, M., Wilkerson, C.R., Hall, C.D., and Akmedov, N.G., J. Org. Chem., 2004, vol. 69, p. 6617.Google Scholar
  31. 31.
    Zhou, G., Lim, D., and Coltart, D.M., Org. Lett., 2008, vol. 10, p. 3809.Google Scholar
  32. 32.
    Štefane, B., Org. Lett., 2010, vol. 12, p. 2900.Google Scholar
  33. 33.
    Sato, K., Yamazoe, S., Yamamoto, R., Ohata, S., Tarui, A., Omote, M., Kumadaki, I., and Ando, A., Org. Lett., 2008, vol. 10, p. 2405.Google Scholar
  34. 34.
    Park, J.B., Ko, S.H., Hong, W.P., and Lee, K.-J., Bull. Korean Chem. Soc., 2004, vol. 25, p. 927.Google Scholar
  35. 35.
    Cordon, S., Dupre, D., Falgayrac, G., and Nedelec, J.Y., Eur. J. Org. Chem., 2002, p. 105.Google Scholar
  36. 36.
    Fukuyama, T., Doi, T., Minamino, S., Omura, S., and Ryu, I., Angew. Chem., Int. Ed., 2007, vol. 46, p. 5559.Google Scholar
  37. 37.
    Sada, M. and Matsubara, S.A., Org. Lett., 2010, vol. 12, p. 2900.Google Scholar
  38. 38.
    Hashmi, A.S.K., Wang, T., Shi, S., and Rudolph, M., J. Org. Chem., 2012, vol. 77, p. 7761.Google Scholar
  39. 39.
    Korsager, S., Nielsen, D.U., Taaning, R.H., Lindhardt, A.T., and Skrydstrup, T., Chem. Eur. J., 2013, vol. 19, p. 17 687.Google Scholar
  40. 40.
    Hermange, P., Lindhardt, A.T., Taaning, R.H., Bjerglund, K., Lupp, D., and Skrydstrup, T., J. Am. Chem. Soc., 2011, vol. 133, p. 6061.Google Scholar
  41. 41.
    Zhang, J., Yang, N., and Yang, L., Molecules, 2012, vol. 17, p. 6415.Google Scholar
  42. 42.
    Bartlett, S.L. and Beaudry, C.M., J. Org. Chem., 2011, vol. 76, p. 9852.Google Scholar
  43. 43.
    Sanz, R., Miguel, D., Martínez, A., Álvarez-Gutiérrez, J.M., and Rodríguez, F., Org. Lett., 2007, vol. 9, p. 2027.Google Scholar
  44. 44.
    Xia, F., Zhao, Z.L., and Liu, P.N., Tetrahedron Lett., 2012, vol. 53, p. 2828.Google Scholar
  45. 45.
    Kumari, N., Yadav, P., and Joshi, Y.C., Chem. Sci. Trans., 2013, vol. 2, p. 81.Google Scholar
  46. 46.
    Sanz, R., Miguel, D., Martínez, A., Álvarez-Gutiérrez, J.M., and Rodríguez, F., Org. Lett., 2007, vol. 9, p. 727.Google Scholar
  47. 47.
    Kumar, B.P. and Amrita, G., Int. J. Res. Chem. Environ., 2012, vol. 2, p. 167.Google Scholar
  48. 48.
    Basu, P.K., Gonzáles, A., López, C., Font-Bardía, V., and Cavlet, T., J. Organomet. Chem., 2009, vol. 694, p. 3633.Google Scholar
  49. 49.
    Gan, X.-X., Tan, R.-Y., Song, H.-B., Zhao, X.-M., and Tang, L.-F., J. Coord. Chem., 2006, vol. 59, p. 783.Google Scholar
  50. 50.
    Xu, H.-Y., Wang, S.-Y., Jiang, R., Xu, X.-P., Chu, X.-Q., and Ji, S.-J., Tetrahedron, 2012, vol. 68, p. 8340.Google Scholar
  51. 51.
    Borduas, N. and Powell, D.A., J. Org. Chem., 2008, vol. 73, p. 7822.Google Scholar
  52. 52.
    Cheng, D. and Bao, W., J. Org. Chem., 2008, vol. 73, p. 6881.Google Scholar
  53. 53.
    Ohtsuka, Y., Uraguchi, D., Yamamoto, K., Tokuhisa, K., and Yamakawa, T., Tetrahedron, 2012, vol. 68, p. 2636.Google Scholar
  54. 54.
    Turmasova, A.A., Spesivaya, E.S., Konshina, Dzh.N., and Konshin, V.V., Russ. Chem. Bull., Int. Ed., 2012, vol. 61, no. 9, p. 1733.Google Scholar
  55. 55.
    Turmasova, A.A., Konshin, V.V., and Konshina, Dzh.N., Russ. J. Gen. Chem., 2014, vol. 84, no. 7, p. 1273.Google Scholar
  56. 56.
    Khusnutdinov, R.I., Kislitsyna, K.S., and Chadneva, N.A., Russ. J. Org. Chem., 2014, vol. 50, no. 10, p. 1409.Google Scholar
  57. 57.
    Butov, G.M., Mokhov, V.M., Parshin, G.Yu., Kunaev, R.U., Shevelev, S.A., Dalinger, I.L., and Vatsadze, I.A., Russ. J. Org. Chem., 2008, vol. 44, no. 8, p. 1157.Google Scholar
  58. 58.
    Khlebnikova, T.S., Piven’, Yu.A., Isakova, V.G., and Lakhvich, F.A., Russ. J. Org. Chem., 2012, vol. 48, no. 10, p. 1277.Google Scholar
  59. 59.
    Shen, Q., Huang, W., Wang, J., and Zhou, X., Org. Lett., 2007, vol. 9, p. 4491.Google Scholar
  60. 60.
    Nemati, F., Heravi, M.M., and Rad, R.S., Chin. J. Catal., 2012, vol. 33, p. 1825.Google Scholar
  61. 61.
    Ouyang, Y., Dong, D., Yu, H., Liang, Y., and Liu, Q., Adv. Synth. Catal., 2006, vol. 348, p. 206.Google Scholar
  62. 62.
    Elinson, M.N., Merkulova, V.M., Ilovaisky, A.I., Chizhov, A.O., Belyakov, P.A., Barba, F., and Batanero, B., Electrochim. Acta, 2010, vol. 55, p. 2129.Google Scholar
  63. 63.
    Baeva, L.A., Viktasheva, L.F., Fatykhov, A.A., and Lyapina, N.K., Russ. J. Org. Chem., 2013, vol. 49, no. 9, p. 1283.Google Scholar
  64. 64.
    Gómez-Torres, E., Alonso, D.A., Gómez-Bengoa, E., and Nájera, C., Org. Lett., 2011, vol. 13, p. 6106.Google Scholar
  65. 65.
    Barkov, A.Yu., Korotaev, V.Yu., and Sosnovskikh, V.Ya., Tetrahedron Lett., 2013, vol. 54, p. 6819.Google Scholar
  66. 66.
    Li, H., He, Z., Guo, X., Li, W., Zhao, X., and Li, Z., Org. Lett., 2009, vol. 11, p. 4176.Google Scholar
  67. 67.
    Kobayashi, S., Gustafsson, T., Shimizu, Y., Kiyohara, H., and Matsubara, R., Org. Lett., 2006, vol. 8, p. 4923.Google Scholar
  68. 68.
    Endo, K., Hatakeyama, T., Nakamura, M., and Nakamura, E., J. Am. Chem. Soc., 2007, vol. 129, p. 5264.Google Scholar
  69. 69.
    Yoshikai, N., Zhang, S.-L., Yamagata, K.-i., Tsuji, H., and Nakamura, E., J. Am. Chem. Soc., 2009, vol. 131, p. 4099.Google Scholar
  70. 70.
    Jiang, H., Cheng, Y., Zhang, Y., and Yu, S., Org. Lett., 2013, vol. 15, p. 4884.Google Scholar
  71. 71.
    Khan, A.T., Ali, M.A., Goswami, P., and Choudhury, L.H., J. Org. Chem., 2006, vol. 71, p. 8961.Google Scholar
  72. 72.
    Kitamura, T., Kuriki, S., Morshed, M.H., and Hori, Y., Org. Lett., 2011, vol. 13, p. 2392.Google Scholar
  73. 73.
    Galligan, M.J., Akula, R., and Ibrahim, H., Org. Lett., 2014, vol. 16, p. 600.Google Scholar
  74. 74.
    Yu, J., Liu, S.-S., Cui, J., Hou, X.-S., and Zhang, C., Org. Lett., 2012, vol. 14, p. 832.Google Scholar
  75. 75.
    Zou, L., Wang, B., Mu, H., Zhang, H., Song, Y., and Qu, J., Org. Lett., 2013, vol. 15, p. 3106.Google Scholar
  76. 76.
    Mahmudova, K.T., Maharramov, A.M., Aliyeva, R.A., Aliyev, I.A., Askerov, R.K., Batmaza, R., Kopylovicha, M.N., and Pombeiroa, A.J.L., J. Photochem. Photobiol. A, 2011, vol. 219, p. 159.Google Scholar
  77. 77.
    Singh, Sh. and Joshi, Y.C., Int. J. Pharm. Pharm. Sci., 2012, vol. 5, p. 445.Google Scholar
  78. 78.
    Shchegol’kov, E.V., Burgart, Ya.V., Khudina, O.G., Saloutin, V.I., and Chupakhin, O.N., Russ. Chem. Bull., Int. Ed., 2004, vol. 53, no. 11, p. 2584.Google Scholar
  79. 79.
    Zolfigol, M.A., Molecules, 2001, vol. 6, p. 694.Google Scholar
  80. 80.
    Krishnakumar, K.L. and Paul, M., Int. J. Pharm. Sci. Res., 2013, vol. 4, p. 1154.Google Scholar
  81. 81.
    Elavarasan, S., Bhakiaraj, D., Chellakili, B., Elavarasan, T., and Gopalakrishnan, M., Spectrochim. Acta, Part A, 2012, vol. 97, p. 717.Google Scholar
  82. 82.
    Ferrari, E., Pignedoli, F., Imbriano, C., Marverti, G., Basile, V., Venturi, E., and Saladini, M., J. Med. Chem., 2011, vol. 54, p. 8066.Google Scholar
  83. 83.
    Huang, L., Cheng, K., Yao, B., Xie, Y., and Zhang, Y., J. Org. Chem., 2011, vol. 76, p. 5732.Google Scholar
  84. 84.
    Stergiou, A., Bariotaki, A., Kalaitzakis, D., and Smonou, I., J. Org. Chem., 2013, vol. 78, p. 7268.Google Scholar
  85. 85.
    Zhang, C., Feng, P., and Jiao, N., J. Am. Chem. Soc., 2013, vol. 135, p. 15 257.Google Scholar
  86. 86.
    Dong, D., Ouyang, Y., Yu, H., Liu, Q., Liu, J., Wang, M., and Zhu, J., J. Org. Chem., 2005, vol. 70, p. 4535.Google Scholar
  87. 87.
    Zharkova, G.I., Stabnikov, P.A., Baidina, I.A., Smolentsev, A.I., and Tkachev, S.V., Polyhedron, 2009, vol. 28, p. 2307.Google Scholar
  88. 88.
    Eshghi, H., Seyedi, S.M., Safaei, E., Vakili, M., Farhadipour, A., and Bayat-Mokhtari, M., J. Mol. Catal. A: Chem., 2012, p. 430.Google Scholar
  89. 89.
    Specklin, S., Bertus, P., Weibel, J.-M., and Pale, P.A., J. Org. Chem., 2008, vol. 73, p. 7845.Google Scholar
  90. 90.
    Rahn, T., Nguyen, V.T.H., Dang, T.H.T., Ahmed, Z., Methling, K., Lalk, M., Fischer, C., Spannenberg, A., and Langer, P., J. Org. Chem., 2007, vol. 72, p. 1957.Google Scholar
  91. 91.
    Xue, S., Li, L.-Z., Liu, Y.-K., and Guo Q.-X. J. Org. Chem. 2006, 71, 215.Google Scholar
  92. 92.
    Shchegol’kov, E.V., Burgart, Ya.V., Slepukhin, P.A., Kazheva, O.N., Shilov, G.V., D’yachenko, O.A., and Saloutin, V.I., Russ. J. Org. Chem., 2007, vol. 43, no. 12, p. 1788.Google Scholar
  93. 93.
    Magano, J., Farrand, D., Haase, J.P., Lovdahl, M., Maloney, M.T., Pozzo, M.J., Teixeira, J.J., Whritenour, D.C., Rizzo, J., Tumelty, D., Bhat, A., and Bradshaw, C., Tetrahedron Lett., 2012, vol. 53, p. 1385.Google Scholar
  94. 94.
    Doppalapudi, V.R., Tryder, N., Li, L., Aja, T., Griffith, D., Liao, F., Roxas, G., Ramprasad, M.P., Bradshaw, C., and Barbas, C.F. III., Bioorg. Med. Chem. Lett., 2007, vol. 17, p. 501.Google Scholar
  95. 95.
    Kuninobu, Y., Nishi, M., Kawata, A., Takata, H., Hanatani, Y., Salprima, Y.S., Iwai, A., and Takai, K., J. Org. Chem., 2010, vol. 75, p. 334.Google Scholar
  96. 96.
    Weng, S.-S., Ke, C.-S., Chen, F.-K., Lyu, Y.-F., and Lin, G.-Y., Tetrahedron, 2011, vol. 67, p. 1640.Google Scholar
  97. 97.
    Nakano, K., Nakayachi, T., Yasumoto, E., Morshed, S.R.M.D., Hashimoto, K., Kikuchi, H., Nishikawa, H., Sugiyama, K., Amano, O., Kawase, M., and Sakagami, H., Anticancer Res., 2004, vol. 24, p. 711.Google Scholar
  98. 98.
    Korde, N.S., Gaikwad, S.T., Khade, B.C., and Rajbhoj, A.S., Chem. Sci. Trans., 2013, vol. 2, p. 407.Google Scholar
  99. 99.
    Vaidya, S.R., Shelke, V.A., Jadhav, S.M., Shankarwar, S.G., and Chondhekar, T.K., Arch. Appl. Sci. Res., 2012, vol. 4, p. 1839.Google Scholar
  100. 100.
    Verma, P.N., Sheikh, J.I., and Juneja, H.D., World Appl. Sci. J., 2011, vol. 14, p. 1154.Google Scholar
  101. 101.
    Kozlov, N.G., Bondarev, S.L., Zhikharko, Yu.D., Knyukshto, V.N., and Basalaeva, L.I., Russ. J. Org. Chem., 2012, vol. 48, no. 11, p. 1439.Google Scholar
  102. 102.
    Chen, Q., Li, L., Bai, L., Hu, H., Li, J., Liang, Q., and Ling, J., Hydrometallurgy, 2011, vol. 105, p. 201.Google Scholar
  103. 103.
    Manaev, A.V., Tambov, K.V., and Traven’, V.F., Russ. J. Org. Chem., 2008, vol. 44, p. 1054.Google Scholar
  104. 104.
    Lee, B., Kang, P., Lee, K.H., Cho, J., Nam, W., Lee, K.W., and Hur, N.H., Tetrahedron Lett., 2013, vol. 54, p. 1384.Google Scholar
  105. 105.
    Wang, D.-J., Fan, L., Zheng, C.-Y., and Fang, Z.-D., J. Fluorine Chem., 2010, vol. 131, p. 584.Google Scholar
  106. 106.
    Wang, D.-J., Zheng, Ch.-Y., and Fan, L., J. Mol. Struct., 2009, vol. 938, p. 311.Google Scholar
  107. 107.
    Gosselin, F., O’Shea, P.D., Webster, R.A., Reamer, R.A., Tillyer, R.D., and Grabowski, E.J.J., Synlett, 2006, p. 3267.Google Scholar
  108. 108.
    Polshettiwar, V. and Varma, R.S., Tetrahedron Lett., 2008, vol. 49, p. 397.Google Scholar
  109. 109.
    Vaddula, B.R., Varma, R.S., and Leazer, J., Tetrahedron Lett., 2013, vol. 54, p. 1538.Google Scholar
  110. 110.
    Sareen, V., Khatri, V., and Jain, P., Heteroletters, 2011, vol. 1, p. 112.Google Scholar
  111. 111.
    Sharma, K., Sareen, V., and Kharti, V., Indian J. Heterocycl. Chem., 2005, vol. 15, p. 47.Google Scholar
  112. 112.
    Khudina, O.G., Shchegol’kov, E.V., Burgart, Ya.V., Kodess, M.I., Kazheva, O.N., Chekhlov, A.N., Shilov, G.V., Dyachenko, O.A., Saloutin, V.I., and Chupakhin, O.N., J. Fluorine Chem., 2005, vol. 126, p. 1230.Google Scholar
  113. 113.
    Rosa, F.A., Machado, P., Vargas, P.S., Bonacorso, H.G., Zanatta, N., and Martins, M.A.P., Synlett, 2008, p. 1673.Google Scholar
  114. 114.
    Sadek, K.U., Mekheimer, R.A., Mohamed, T.M., Moustafa, M.S., and Elnagdi, M.H., Beilstein J. Org. Chem., 2012, vol. 8, p. 18.Google Scholar
  115. 115.
    Petrov, A.A., Kasatochkin, A.N., and Emelina, E.E., Russ. J. Org. Chem., 2012, vol. 48, no. 8, p. 1111.Google Scholar
  116. 116.
    Shaaban, M.R., J. Fluorine Chem., 2008, vol. 129, p. 1156.Google Scholar
  117. 117.
    Babinski, D.J., Aguilar, H.R., Still, R., and Frantz, D.E., J. Org. Chem., 2011, vol. 76, p. 5915.Google Scholar
  118. 118.
    Putilova, E.S., Kryshtal’, G.V., Zhdankina, G.M., Troitskii, N.A., and Zlotin, S.G., Russ. J. Org. Chem., 2005, vol. 41, no. 4, p. 512.Google Scholar
  119. 119.
    Putilova, E.S., Troitskii, N.A., Zlotin, S.G., Khudina, O.G., Burgart, Ya.V., Saloutin, V.I., and Chupakhin, O.N., Russ. J. Org. Chem., 2006, vol. 42, no. 9, p. 1392.Google Scholar
  120. 120.
    Putilova, E.S., Troitskii, N.A., and Zlotin, S.G., Russ. Chem. Bull., Int. Ed., 2005, vol. 54, no. 5, p. 1233.Google Scholar
  121. 121.
    Konkala, K., Sabbavarapu, N.M., Katla, R., Durga, N.Y.V., Reddy, T.V.K., Devi, B.L.A.P., and Prasad, R.B.N., Tetrahedron Lett., 2012, vol. 53, p. 1968.Google Scholar
  122. 122.
    Patil, S., Jadhav, S.D., and Mane, S.Y., Int. J. Org. Chem., 2011, vol. 1, p. 125.Google Scholar
  123. 123.
    Šterk, D., Časar, Z., Jukič, M., and Košmrlj, J., Tetrahedron, 2012, vol. 68, p. 2155.Google Scholar
  124. 124.
    Maiti, S., Biswas, S., and Jana, U., J. Org. Chem., 2010, vol. 75, p. 1674.Google Scholar
  125. 125.
    Meshram, H.M., Babu, B.M., Kumar, G.S., Thakur, P.B., and Bangade, V.M., Tetrahedron Lett., 2013, vol. 54, p. 2296.Google Scholar
  126. 126.
    Bhat, S.I. and Trivedi, D.R., Tetrahedron Lett., 2013, vol. 54, p. 5577.Google Scholar
  127. 127.
    Wang, H.-Y. and Shi, D.-Q., ACS Comb. Sci., 2013, vol. 15, p. 261.Google Scholar
  128. 128.
    Mahanta, S.P. and Panda, P.K., Tetrahedron Lett., 2009, vol. 50, p. 890.Google Scholar
  129. 129.
    Nakhi, A., Srinivas, P.T.V.A., Rahman, M.S., Kishore, R., Seerapu, G.P.K., Kumar, K.L., Haldar, D., Rao, M.V.B., and Pal, M., Bioorg. Med. Chem. Lett., 2013, vol. 23, p. 1828.Google Scholar
  130. 130.
    Kidwai, M., Chauhan, R., and Jahan, A., Chin. Sci. Bull., 2012, vol. 57, p. 2273.Google Scholar
  131. 131.
    Chen, Y., Huang, J., Hwang, T.-L., Li, T.J., Cui, S., Chan, J., and Bio, M., Tetrahedron Lett., 2012, vol. 53, p. 3237.Google Scholar
  132. 132.
    Shchegol’kov, E.V., Sadchikova, E.V., Burgart, Ya.V., and Saloutin, V.I., Russ. J. Org. Chem., 2009, vol. 45, no. 4, p. 572.Google Scholar
  133. 133.
    Haines, N.R., VanZanten, A.N., Cuneo, A.A., Miller, J.R., Andrews, W.J., Carlson, D.A., Harrington, R.M., Kiefer, A.M., Mason, J.D., Pigza, J.A., and Murphree, S.S., J. Org. Chem., 2011, vol. 76, p. 8131.Google Scholar
  134. 134.
    He, C., Guo, S., Ke, J., Hao, J., Xu, H., Chen, H., and Lei, A., J. Am. Chem. Soc., 2012, vol. 134, p. 5766.Google Scholar
  135. 135.
    Liu, W., Jiang, H., Zhang, M., and Qi, C., J. Org. Chem., 2010, vol. 75, p. 966.Google Scholar
  136. 136.
    Mothe, S.R., Lauw, S.J.L., Kothandaraman, P., and Chan, P.W.H., J. Org. Chem., 2012, vol. 77, p. 6937.Google Scholar
  137. 137.
    Albrecht, Ł., Ransborg, L.K., Gschwend, B., and Jørgensen, K.A., J. Am. Chem. Soc., 2010, vol. 132, p. 17 886.Google Scholar
  138. 138.
    Dhiman, S. and Ramasastry, S.S.V., J. Org. Chem., 2013, vol. 78, p. 10 427.Google Scholar
  139. 139.
    Rong, Z.-Q., Jia, M.-Q., and You, S.-L., Org. Lett., 2011, vol. 13, p. 4080.Google Scholar
  140. 140.
    Wang, G., Chen, X., Miao, G., Yao, W., and Ma, C., J. Org. Chem., 2013, vol. 78, p. 6223.Google Scholar
  141. 141.
    Nair, D.K., Mobin, S.M., and Namboothiri, I.N.N., Tetrahedron Lett., 2012, vol. 53, p. 3349.Google Scholar
  142. 142.
    Rao, L.C., Meshram, H.M., Kumar, N.S., Rao, N.N., and Jagadeesh Babu, N., Tetrahedron Lett., 2014, vol. 55, p. 1127.Google Scholar
  143. 143.
    Xi, M.-Y., Sun, Z.-Y., Sun, H.-P., Jia, J.-M., Jiang, Z.-Y., Tao, L., Ye, M., Yang, X., Wang, Y.-J., Xue, X., Huang, J.-J., Gao, Y., Guo, X.-K., Zhang, S.-L., Yang, Y.-R., Guo, Q.-L., Hu, R., and You, Q.-D., Eur. J. Med. Chem., 2013, vol. 66, p. 364.Google Scholar
  144. 144.
    Sukhen, S. and Jayaveera, K.N., Int. Res. J. Pharm., 2012, vol. 3, no. 3, p. 193.Google Scholar
  145. 145.
    Ferreira, J.P.A., Silva, V.L.M., Elguero, J., and Silva, A.M.S., Tetrahedron, 2013, vol. 69, p. 9701.Google Scholar
  146. 146.
    Fatma, S., Singh, P.K., Shireen, P.A., Singh, M., and Singh, J., Tetrahedron Lett., 2013, vol. 54, p. 6732.Google Scholar
  147. 147.
    Ge, Z.-Y., Fei, X.-D., Tang, T., Zhu, Y.-M., and Shen, J.-K., J. Org. Chem., 2012, vol. 77, p. 5736.Google Scholar
  148. 148.
    Woon, E.C.Y., Sunderland, P.T., Paine, H.A., Lloyd, M.D., Thompson, A.S., and Threadgill, M.D., Bioorg. Med. Chem., 2013, vol. 21, p. 5218.Google Scholar
  149. 149.
    Kavala, V., Wang, C.-C., Barange, D.K., Kuo, C.-W., Lei, P.-M., and Yao, C.-F., J. Org. Chem., 2012, vol. 77, p. 5022.Google Scholar
  150. 150.
    Mayo, M.S., Yu, X., Zhou, X., Feng, X., Yamamoto, Y., and Bao, M., Org. Lett., 2014, vol. 16, p. 764.Google Scholar
  151. 151.
    Chadegani, F., Darviche, F., and Balalaie, S., Int. J. Org. Chem., 2012, vol. 2, p. 31.Google Scholar
  152. 152.
    Pathak, S., Debnath, K., and Pramanik, A., Beilstein J. Org. Chem., 2013, vol. 9, p. 2344.Google Scholar
  153. 153.
    Ganguly, N.C., Roy, S., Mondal, P., and Saha, R., Tetrahedron Lett., 2012, vol. 53, p. 7067.Google Scholar
  154. 154.
    Kumar, M., Sharma, K., and Arya, A.K., Tetrahedron Lett., 2012, vol. 53, p. 4604.Google Scholar
  155. 155.
    Xie, J., Jiang, H., Cheng, Y., and Zhu, C., Chem. Commun., 2012, vol. 48, p. 979.Google Scholar
  156. 156.
    Abdel-Megid, M., Gabr, Y., Awas, M.A.A., and Abdel-Fatah, N.M., Chem. Heterocycl. Compd., 2009, vol. 45, no. 11, p. 1354.Google Scholar
  157. 157.
    Wang, Y., Huang, J., Chai, Y., Liu, Q., Liang, Y., and Dong, D., J. Comb. Chem., 2008, vol. 10, p. 511.Google Scholar
  158. 158.
    Wang, Y., Dong, D., Yang, Y., Huang, J., Ouyang, Y., and Liu, Q., Tetrahedron, 2007, vol. 63, p. 2724.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Faculty of ChemistryMoscow State UniversityMoscowRussia

Personalised recommendations