Russian Journal of Organic Chemistry

, Volume 48, Issue 1, pp 78–82 | Cite as

Synthesis, structure, and luminescent properties of 2-[2-(9-anthryl)vinyl]quinolines

  • O. V. Serdyuk
  • I. V. Evseenko
  • G. A. Dushenko
  • Yu. V. Revinskii
  • I. E. Mikhailov


Previously unknown 2-[2-(9-anthryl)vinyl]quinolin-8-ol and 2-[2-(9-anthryl)vinyl]-8-methoxyquinoline were synthesized by condensation of 8-hydroxy(methoxy)-2-methylquinoline with 9-anthraldehyde in acetic anhydride, as well as by the Wittig reaction. The product structure was determined on the basis of their 1H NMR, IR, UV, and mass spectra and quantum-chemical calculations. 2-[2-(9-Anthryl)vinyl]-8-methoxyquinoline showed luminescence with a quantum yield φ of 0.25, which was considerably higher than that of its 8-hydroxy analog (φ = 0.067).


Quinoline Lower Unoccupied Molecular Orbit Trans Isomer Ethenyl Quinoline Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hunga, L.S. and Chen, C.H., Mater. Sci. Eng. R, 2002, vol. 39, p. 143.CrossRefGoogle Scholar
  2. 2.
    Chen, C.H. and Shi, J., Coord. Chem. Rev., 1998, vol. 171, p. 161.CrossRefGoogle Scholar
  3. 3.
    Song, K.Ch., Kim, J.S., Park, S.M., Chung, K.-Ch., Ahn, S., and Chang, S.-K., Org. Lett., 2006, vol. 8, p. 3413.CrossRefGoogle Scholar
  4. 4.
    Zhang, H., Wang, Q.-L., and Jiang, Y.-B., Tetrahedron Lett., 2007, vol. 48, p. 3959.CrossRefGoogle Scholar
  5. 5.
    Zouhiri, F., Mouscadet, J.-F., Mekouar, K., Desmaële, D., Savouŕe, D., Leh, H., Subra, F., Bret, M.L., Auclair, C., and d’Angelo, J., J. Med. Chem., 2000, vol. 43, p. 1533.CrossRefGoogle Scholar
  6. 6.
    Stößel, M., Staudigel, J., Steuber, F., Blässing, J., Simmerer, J., Winnacker, A., Neuner, H., Metzdorf, D., Johannes, H.-H., and Kowalsky, W., Synth. Met., 2000, vols. 111–112, p. 19.CrossRefGoogle Scholar
  7. 7.
    Matsumura, M. and Akai, T., Jpn. J. Appl. Phys., 1996, vol. 35, p. 53.Google Scholar
  8. 8.
    Zeng, H.-P., Yang, X.-H.O., Wang, T.-T., Yuan, G.-Z., Zhang, G.-H., and Zhang, X.-M., Cryst. Growth Des., 2006, vol. 6, p. 1697.CrossRefGoogle Scholar
  9. 9.
    Barberis, V.P. and Mikroyannidis, J.A., Synth. Meth., 2006, vol. 156, p. 865.CrossRefGoogle Scholar
  10. 10.
    Xie, J., Ning, Z., and Tian, H., Tetrahedron Lett., 2005, vol. 46, p. 8559.CrossRefGoogle Scholar
  11. 11.
    Phillips, J.P., Breese, R., and Barrall, E.M., J. Org. Chem., 1959, vol. 24, p. 1104.CrossRefGoogle Scholar
  12. 12.
    Mekouar, K., Mouscadet, J.-F., Desmaële, D., Subra, F., Leh, H., Savouŕe, D., Auclair, C., and d’Angelo, J., J. Med. Chem., 1998, vol. 41, p. 2846.CrossRefGoogle Scholar
  13. 13.
    Goldmanl, M. and Wehry, E.L., Anal. Chem., 1970, vol. 42, p. 1178.CrossRefGoogle Scholar
  14. 14.
    Bardez, E., Devol, I., Larrey, B., and Valeur, B., J. Phys. Chem. B, 1997, vol. 101, p. 7786.CrossRefGoogle Scholar
  15. 15.
    Foresman, J.B. and Frisch, E., Exploring Chemistry with Electronic Structure Methods, Pittsburg: Gaussian, 1996, 2nd ed..Google Scholar
  16. 16.
    Bratton, L.D., Strzelbicka, B., and Bartsch, R.A., Arkivoc, 2003, part (xiii), p. 80.Google Scholar
  17. 17.
    Metody polucheniya khimicheskikh reaktivov i preparatov (Methods for Preparation of Chemicals), Moscow: IREA, 1963, vol. 7, p. 8.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • O. V. Serdyuk
    • 1
  • I. V. Evseenko
    • 1
  • G. A. Dushenko
    • 2
  • Yu. V. Revinskii
    • 2
  • I. E. Mikhailov
    • 2
  1. 1.Southern Federal UniversityRostov-on-DonRussia
  2. 2.Southern Research CenterRussian Academy of SciencesRostov-on-DonRussia

Personalised recommendations