Russian Journal of Organic Chemistry

, Volume 46, Issue 9, pp 1269–1276 | Cite as

The comparison of addition of molecules possessing P(V)-H bond to alkynes catalyzed with Pd and Ni complexes

  • V. P. AnanikovEmail author
  • L. L. Khemchyan
  • I. P. Beletskaya


Main factors have been analyzed necessary for creation of an efficient catalytic system for alkynes hydrophosphorylation based on nickel complexes, and a valid model system was suggested for the comparison with palladium complexes. It has been discovered for the first time that the insertion of an alkyne into the metal-hydrogen bond occurs with a considerably lower activation barrier than into the metal-phosphorus bond, whereas the variation in the reaction energy corresponds in both cases to an exothermic reaction. Under the optimized conditions the transformation catalyzed by nickel complexes does not require acid addition and may proceed even in the absence of a phosphine ligand.


Alkyne Acac Nickel Complex Phosphine Ligand Terminal Alkyne 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Catalytic Heterofunctionalization, Togni, A. and Grützmacher, H., Eds., Weinheim: Wiley-VCH, 2001.Google Scholar
  2. 2.
    Beller, M., Seayad, J., Tillack, A., and Jiao, H., Angew. Chem., Int. Ed., 2004, vol. 43, p. 3368.CrossRefGoogle Scholar
  3. 3.
    Alonso, F., Beletskaya, I.P., and Yus, M., Chem. Rev., 2004, vol. 104, p. 3079.CrossRefGoogle Scholar
  4. 4.
    Suginome, M. and Ito, Y., J. Organometal. Chem., 2003, vol. 685, p. 218.CrossRefGoogle Scholar
  5. 5.
    Suginome, M. and Ito, Y., J. Organometal. Chem., 2003, vol. 680, p. 43.CrossRefGoogle Scholar
  6. 6.
    Beletskaya, I.P. and Ananikov, V.P., Eur. J. Org. Chem., 2007, p. 3431.Google Scholar
  7. 7.
    Beletskaya, I.P. and Ananikov, V.P., Pure Appl. Chem., 2007, vol. 79, p. 1041.CrossRefGoogle Scholar
  8. 8.
    Han, L.-B. and Tanaka, M., J. Am. Chem. Soc., 1996, vol. 118, p. 1571.CrossRefGoogle Scholar
  9. 9.
    Han, L.-B., Hua, R., and Tanaka, M., Angew. Chem., Int. Ed., 1998, vol. 37, p. 94.CrossRefGoogle Scholar
  10. 10.
    Nune, S.K. and Tanaka, M., Chem. Commun., 2007, p. 2858.Google Scholar
  11. 11.
    Dobashi, N., Fuse, K., Hoshino, T., Kanada, J., Kashiwabara, T., Kobata, C., Nune, S.K., and Tanaka, M., Tetrahedron Lett., 2007, vol. 48, p. 4669.CrossRefGoogle Scholar
  12. 12.
    Tanaka, M., Top. Curr. Chem., 2004, vol. 232, p. 25.Google Scholar
  13. 13.
    Han, L.-B., Zhang, C., Yazawa, H., and Shimada, S., J. Am. Chem. Soc., 2004, vol. 126, p. 5080.CrossRefGoogle Scholar
  14. 14.
    Han, L.-B., Ono, Y., and Shimada, S., J. Am. Chem. Soc., 2008, vol. 130, p. 2752.CrossRefGoogle Scholar
  15. 15.
    Deprèle, S. and Montchamp, J.-L., J. Am. Chem. Soc., 2002, vol. 124, p. 9386.CrossRefGoogle Scholar
  16. 16.
    Ribière, P., Bravo-Altamirano, K., Antczak, M.I., Hawkins, J.D., and Montchamp, J.-L., J. Org. Chem., 2005, vol. 70, p. 4064.CrossRefGoogle Scholar
  17. 17.
    Coudray, L. and Montchamp, J.-L., Eur. J. Org. Chem., 2008, p. 3601.Google Scholar
  18. 18.
    Duraud, A., Toffano, M., and Fiaud, J.-C., Eur. J. Org. Chem., 2009, p. 4400.Google Scholar
  19. 19.
    Goulioukina, N.S., Dolgina, T.M., Beletskaya, I.P., Henry, J.-Ch., Lavergne, D., Ratovelomanana-Vidal, V., and Genet, J.-P., Tetrahedron: Asymmetry, 2001, vol. 12, p. 319.CrossRefGoogle Scholar
  20. 20.
    Beletskaya, I.P. and Kazankova, M.A., Zh. Org. Khim., 2002, vol. 38, p. 1391.Google Scholar
  21. 21.
    Ananikov, V.P., Khemchyan, L.L., and Beletskaya, I.P., Synlett., 2009, p. 2375.Google Scholar
  22. 22.
    Jolly, P.W. and Wilke, G., The Organic Chemistry of Nickel, New York: Academic, Press, p. 1974.Google Scholar
  23. 23.
    Masuda, T., Sanda, F., and Shiotsuki, M., Comprehensive Organometallic Chemistry. III, Mingos, D.M.P. and Crabtree. R.H., Eds., Oxford: Elsevier Ltd., 2007, vol. 11, p. 557.CrossRefGoogle Scholar
  24. 24.
    Ananikov, V.P., Gayduk, K.A., Starikova, Z.A., and Beletskaya, I.P., Organometallics, 2010, DOI: 10.1021/om1003732.Google Scholar
  25. 25.
    Zhao, Ch.-Q., Han, L.-B., Goto, M., and Tanaka, M., Angew. Chem., Int. Ed., 2001, vol. 40, p. 1929.CrossRefGoogle Scholar
  26. 26.
    Han, L.-B., Zhao, Ch.-Q., and Tanaka, M., J. Org. Chem., 2001, vol. 66, p. 5929.CrossRefGoogle Scholar
  27. 27.
    Pedersen, D.S. and Rosenbohm, C., Synthesis, 2001, p. 2431.Google Scholar
  28. 28.
    Becke, A.D., Phys. Rev. A, 1988, vol. 38, p. 3098.CrossRefGoogle Scholar
  29. 29.
    Lee, C., Yang, W., and Parr, R.G., Phys. Rev. B, 1988, vol. 37, p. 785.CrossRefGoogle Scholar
  30. 30.
    Becke, A.D., J. Chem. Phys., 1993, vol. 98, p. 5648.CrossRefGoogle Scholar
  31. 31.
    Hay, P.J. and Wadt, W.R., J. Chem. Phys., 1985, vol. 82, p. 270.CrossRefGoogle Scholar
  32. 32.
    Hay, P.J. and Wadt, W.R., J. Chem. Phys., 1985, vol. 82, p. 284.CrossRefGoogle Scholar
  33. 33.
    Hay, P.J. and Wadt, W.R., J. Chem. Phys., 1985, vol. 82, p. 299.CrossRefGoogle Scholar
  34. 34.
    Dunning, T.H. Jr. and Hay, P.J., Modern Theoretical Chemistry, Schaefer, H.F. III, Eds., New York: Plenum, 1976, vol. 3, 1.Google Scholar
  35. 35.
    Ditchfield, R., Hehre, W.J., and Pople, J.A., J. Chem. Phys., 1971, vol. 54, p. 724.CrossRefGoogle Scholar
  36. 36.
    Hehre, W.J., Ditchfield, R., and Pople, J.A., J. Chem. Phys., 1972, vol. 56, p. 2257.CrossRefGoogle Scholar
  37. 37.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A. Jr., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., and Pople, J.A., Gaussian 03, Pittsburgh: Gaussian, Inc., 2003.Google Scholar
  38. 38.
    Schaftenaar, G., and Noordik, J.H., J. Comput.-Aided, Mol. Des., 2000, vol. 14, p. 123.CrossRefGoogle Scholar
  39. 39.
    Allouche, A.R., Gabedit — a Graphical User Interface for Computational Chemistry Packages,

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • V. P. Ananikov
    • 1
    Email author
  • L. L. Khemchyan
    • 1
  • I. P. Beletskaya
    • 2
  1. 1.Zelinskii Institute of Organic ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations