Russian Journal of Organic Chemistry

, Volume 46, Issue 7, pp 976–986 | Cite as

Monofluorinated aziridines in asymmetric synthesis of chiral fluorinated prop-2-yn-1-amines

  • A. S. Konev
  • K. Abbaspour Tehrani
  • A. F. Khlebnikov
  • M. S. Novikov
  • J. Magull
Article

Abstract

Nonracemic C-fluoroaziridines were synthesized for the first time by reaction of fluorocarbene with N-diphenylmethylidene-substituted natural amino acid esters. The products were shown to be used in asymmetric synthesis of chiral fluorinated prop-2-yn-1-amines via one-pot process involving isomerization of 2-fluoroaziridines into α-fluoro imines and subsequent reaction with alkynyldifluoroborane generated in situ.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dowson, J.H., J. Neural Transm., 1987, vol. 23, p. 121.Google Scholar
  2. 2.
    Krishnan, K.R.R., The American Psychiatric Press Textbook of Psychopharmacology, Schatzberg, A.F. and Nemeroff, C.B., Eds., Washington, DC: Americal Psychiatric, 1998, 2nd. ed., p. 239.Google Scholar
  3. 3.
    Nies, A. and Robinson, D.S., Monoamine Oxidase Inhibitors: The State of the Art, Youdim, M.B.H. and Paykel, E.S., Eds., Chichester: Wiley, 1981, p. 141.Google Scholar
  4. 4.
    Tyrer, P., Gardner, M., Lambourn, J., and Whitford, M., Monoamine Oxidase Inhibitors: The State of the Art, Youdim, M.B.H. and Paykel, E.S., Eds., Chichester: Wiley, 1981, p. 149.Google Scholar
  5. 5.
    Baker, G.B., Urichuk, L.J., McKenna, K.F., and Kennedy, S.H., Cell. Mol. Neurobiol., 1999, vol. 19, p. 411.CrossRefGoogle Scholar
  6. 6.
    Knoll, J., Ecsery, Z., Nievel, J.B., Kelemen, K., and Knoll, B., Arch. Int. Pharmacodyn. Ther., 1965, vol. 155, p. 154.Google Scholar
  7. 7.
    Knoll, J., Monoamine Oxidase: Structure, Function, and Altered Functions, Singer, T.P., Von Korff, R.W., and Murphy, D.L., Eds., New York: Academic, 1979, p. 431.Google Scholar
  8. 8.
    Ling, L., Urichuk, L.J., Duff Sloley, B., Coutts, R.T., Baker, G.B., Shan, J.J., and Pang, P.K.T., Bioorg. Med. Chem. Lett., 2001, vol. 11, p. 2715.CrossRefGoogle Scholar
  9. 9.
    D’hooghe, M., Van Brabandt, W., and De Kimpe, N., J. Org. Chem., 2004, vol. 69, p. 2703.CrossRefGoogle Scholar
  10. 10.
    Salvador, R., Simon, D.Z., and Leonard, L., WO Patent no. 93 20 804, 1993; Chem. Abstr., 1994, vol. 120, no. 216 929.Google Scholar
  11. 11.
    Porco, J.A., Jr., Schoenen, F.J., Stout, T.J., Clardy, J., and Schreiber, S.L., J. Am. Chem. Soc., 1990, vol. 112, p. 7410.CrossRefGoogle Scholar
  12. 12.
    Murai, T., Mutoh, Y., Ohta, Y., and Murakami, M., J. Am. Chem. Soc., 2004, vol. 126, p. 5968.CrossRefGoogle Scholar
  13. 13.
    Magueur, G., Crousse, B., and Bonnet-Delpon, D., Tetrahedron Lett., 2005, vol. 46, p. 2219.CrossRefGoogle Scholar
  14. 14.
    Trost, B.M. and Chen, S.-F., J. Am. Chem. Soc., 1986, vol. 108, p. 6053.CrossRefGoogle Scholar
  15. 15.
    Clive, D.L.J., Cole, D.C., and Tao, Y., J. Org. Chem., 1994, vol. 59, p. 1396.CrossRefGoogle Scholar
  16. 16.
    Osipov, S.N., Tsouker, P., Hennig, L., and Burger, K., Tetrahedron, 2004, vol. 60, p. 271.CrossRefGoogle Scholar
  17. 17.
    Semeril, D., Le Notre, J., Bruneau, C., Dixneuf, P., Kolomiets, A.F., and Osipov, S.N., New J. Chem., 2001, vol. 25, p. 16.CrossRefGoogle Scholar
  18. 18.
    Moroni, M., Koksch, B., Osipov, S.N., Crucianelli, M., Frigerio, M., Bravo, P., and Burger, K., J. Org. Chem., 2001, vol. 66, p. 130.CrossRefGoogle Scholar
  19. 19.
    Díez, R., Badorrey, R., Díaz-de-Villegas, M.D., and Gálvez, J.A., Eur. J. Org. Chem., 2007, p. 2114.Google Scholar
  20. 20.
    Aschwanden, P., Stephenson, C.R.J., and Carreira, E.M., Org. Lett., 2006, vol. 8, p. 2437.CrossRefGoogle Scholar
  21. 21.
    Bisai, A. and Singh, V.K., Org. Lett., 2006, vol. 8, p. 2405.CrossRefGoogle Scholar
  22. 22.
    Lo, V.K.-Y., Liu, Y., Wong, M.-K., and Che, C.-M., Org. Lett., 2006, vol. 8, p. 1529.CrossRefGoogle Scholar
  23. 23.
    Gommermann, N., Koradin, C., Polborn, K., and Knochel, P., Angew. Chem., Int. Ed., 2003, vol. 42, p. 5763.CrossRefGoogle Scholar
  24. 24.
    Koradin, C., Polborn, K., and Knochel, P., Angew. Chem., Int. Ed., 2002, vol. 41, p. 2535.CrossRefGoogle Scholar
  25. 25.
    Wei, C. and Li, C.-J., J. Am. Chem. Soc., 2002, vol. 124, p. 5638.CrossRefGoogle Scholar
  26. 26.
    Caner, H., Groner, E., Levy, L., and Agranat, I., Drug Discov. Today, 2004, vol. 4, p. 313.Google Scholar
  27. 27.
    Shimazawa, R., Nagai, N., Toyoshima, S., and Okuda, H., J. Health Sci., 2008, vol. 54, p. 23.CrossRefGoogle Scholar
  28. 28.
    Chiral Drugs, Challener, C.A., Ed., Aldershot, Hampshire, England: Ashgate, 2001.Google Scholar
  29. 29.
    Chirality in Drug Research, Francotte, E. and Lindner, W., Eds., Weinheim: Wiley, 2006.Google Scholar
  30. 30.
    Chirality in Drug Design and Development, Reddy, I.K. and Mehyar, R., Eds., New York: Marcel Dekker, 2004.Google Scholar
  31. 31.
    Konev, A.S., Stas, S., Novikov, M.S., Khlebnikov, A.F., and Abbaspour Tehrani, K., Tetrahedron, 2008, vol. 64, p. 117.CrossRefGoogle Scholar
  32. 32.
    Mengel, A. and Reiser, O., Chem. Rev., 1999, vol. 99, p. 1191.CrossRefGoogle Scholar
  33. 33.
    Konev, A.S., Novikov, M.S., and Khlebnikov, A.F., Tetrahedron Lett., 2005, vol. 46, p. 8337.CrossRefGoogle Scholar
  34. 34.
    Konev, A.S., Novikov, M.S., and Khlebnikov, A.F., Russ. J. Org. Chem., 2007, vol. 43, p. 286.CrossRefGoogle Scholar
  35. 35.
    Kostikov, R.R., Khlebnikov, A.F., and Oglobin, K.A., Dokl. Akad. Nauk SSSR, 1975, vol. 223, p. 1375.Google Scholar
  36. 36.
    Yamanaka, H., Kikui, J., Teramura, K., and Ando, T., J. Org. Chem., 1976, vol. 41, p. 3794.CrossRefGoogle Scholar
  37. 37.
    Verniest, G., Colpaert, F., Van Hende, E., and De Kimpe, N., J. Org. Chem., 2007, vol. 72, p. 8569.CrossRefGoogle Scholar
  38. 38.
    Van Hende, E., Verniest, G., Surmont, R., and De Kimpe, N., Org. Lett., 2007, vol. 9, p. 2935.CrossRefGoogle Scholar
  39. 39.
    O’Donnell, M.J. and Polt, R.L., J. Org. Chem., 1982, vol. 47, p. 2663.CrossRefGoogle Scholar
  40. 40.
    Polt, R., Peterson, M.A., and DeYoung, L., J. Org. Chem., 1992, vol. 57, p. 5469.CrossRefGoogle Scholar
  41. 41.
    Singh, G.S., D’hooghe, M., and De Kimpe, N., Chem. Rev., 2007, vol. 107, p. 2080.CrossRefGoogle Scholar
  42. 42.
    Konev, A.S. and Khlebnikov, A.F., Collect. Czech. Chem. Commun., 2008, vol. 73, p. 1553.CrossRefGoogle Scholar
  43. 43.
    Davis, F.A. and Deng, J., Org. Lett., 2007, vol. 9, p. 1707.CrossRefGoogle Scholar
  44. 44.
    Ziegler, F.E. and Belema, M., J. Org. Chem., 1997, vol. 62, p. 1083.CrossRefGoogle Scholar
  45. 45.
    Konev, A.S., Novikov, M.S., Khlebnikov, A.F., and Abbaspour Tehrani, K., J. Fluorine Chem., 2007, vol. 128, p. 114.CrossRefGoogle Scholar
  46. 46.
    Purrington, S.T., Lazaridis, N.V., and Bumgardner, C.L., Tetrahedron Lett., 1986, vol. 27, p. 2715.CrossRefGoogle Scholar
  47. 47.
    Seyferth, D. and Hopper, S.P., J. Organomet. Chem., 1973, vol. 51, p. 77.CrossRefGoogle Scholar
  48. 48.
    Molander, G.A., Katona, B.W., and Machrouchi, F., J. Org. Chem., 2002, vol. 67, p. 8416.CrossRefGoogle Scholar
  49. 49.
    Stas, S. and Abbaspour Tehrani, K., Tetrahedron, 2007, vol. 63, p. 8921.CrossRefGoogle Scholar
  50. 50.
    Novikov, M.S., Khlebnikov, A.F., Sidorina, E.S., and Kostikov, R.R., J. Chem. Soc., Perkin Trans. 1, 2000, p. 231.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • A. S. Konev
    • 1
  • K. Abbaspour Tehrani
    • 2
  • A. F. Khlebnikov
    • 1
  • M. S. Novikov
    • 1
  • J. Magull
    • 3
  1. 1.St. Petersburg State UniversitySt. PetersburgRussia
  2. 2.Faculty of Sciences, Department of Applied Biological Sciences and Engineering, Laboratory for Organic ChemistryVrije UniversiteitBrusselBelgium
  3. 3.Inorganic Chemistry InstituteGeorg-August UniversityGöttingenGermany

Personalised recommendations