Advertisement

Russian Journal of Organic Chemistry

, Volume 45, Issue 12, pp 1743–1754 | Cite as

Sulfur-containing alkenes—A new class of chelating ligands: Synthesis, coordination to palladium, and structure of the resulting complexes

  • V. P. Ananikov
  • A. O. Piroyan
  • K. A. Gaiduk
  • I. P. Beletskaya
  • V. N. Khrustalev
  • M. Yu. Antipin
Article

Abstract

Stable 1,2-disulfanylalkene palladium complexes [(RS-CH=CR′-SR)PdCl2] were synthesized in 85–94% yield by reaction of palladium(II) chloride with sulfur-containing ligands RS-CH=C(R′)-SR (analogs of dithiolate ligands). The structure of the complexes was studied by NMR spectroscopy and quantum-chemical methods. The binding energy in palladium complexes with bis(arylsulfanyl)- and bis(alkylsulfanyl)alkenes was estimated (DFT) at 50 and 56 kcal/mol, respectively. Variation of substituents on the sulfur atoms is a convenient tool for fine tuning of the ligand properties and controlling the strength of the complex. The bite angle of the ligands does not depend on the substituent nature and is 88–89°, which is typical of square-planar complexes. According to the bite angle, the examined ligands are analogs of well known bidentate phosphine ligands, but the former are more labile since the corresponding binding energy is lower by 36 kcal/mol.

Keywords

Palladium Complex Phosphine Ligand Chelate Ligand Bite Angle Anti Conformer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dithiolene Chemistry: Synthesis, Properties, and Applications, Karlin, K.D. and Stiefel, E.I., Eds. (Progress in Inorganic Chemistry Series). New York: Wiley, 2004, vol. 52.Google Scholar
  2. 2.
    Schrauzer, G.N. and Mayweg, V., J. Am. Chem. Soc., 1962, vol. 84, p. 3221.CrossRefGoogle Scholar
  3. 3.
    Davison, A., Edelstein, N., Holm, R.H., and Maki, A.H.E., J. Am. Chem. Soc., 1963, vol. 85, p. 2029.CrossRefGoogle Scholar
  4. 4.
    Williams, R., Billig, E., Waters, J.H., and Gray, H.B., J. Am. Chem. Soc., 1966, vol. 88, p. 43.CrossRefGoogle Scholar
  5. 5.
    Matsubayashi, G., Nakano, M., and Tamura, H., Coord. Chem. Rev., 2002, vol. 226, p. 143.CrossRefGoogle Scholar
  6. 6.
    Robertson, N. and Cronin, L., Coord. Chem. Rev., 2002, vol. 227, p. 93.CrossRefGoogle Scholar
  7. 7.
    Fourmigue, M., Acc. Chem. Res., 2004, vol. 37, p. 179.CrossRefGoogle Scholar
  8. 8.
    Kobayashi, A., Fujiwara, E., and Kobayashi, H., Chem. Rev., 2004, vol. 104, p. 5243.CrossRefGoogle Scholar
  9. 9.
    Kato, R., Chem. Rev., 2004, vol. 104, p. 5319.CrossRefGoogle Scholar
  10. 10.
    Mueller-Westerhoff, U.T., Vance, B., and Yoon, D.I., Tetrahedron, 1991, vol. 47, p. 909.CrossRefGoogle Scholar
  11. 11.
    Schrauzer, G.N., Cheng Zhang, E., and Schlemper, O., Inorg. Chem., 1990, vol. 29, p. 3371.CrossRefGoogle Scholar
  12. 12.
    Xin, W., Guo-Qing, B., Jie, D., Qin-Yu, Z., and Kai-Bei, Y., Chin. J. Struct. Chem., 2002, vol. 21, p. 264.Google Scholar
  13. 13.
    Drexler, H.-J., Starke, I., Grotjahn, M., Kleinpeter, E., and Holdt, H.-J., Inorg. Chim. Acta, 2001, vol. 317, p. 133.CrossRefGoogle Scholar
  14. 14.
    Schrauzer, G.N., Ho, R.K.Y., and Murillo, R.P., J. Am. Chem. Soc., 1970, vol. 92, p. 3508.CrossRefGoogle Scholar
  15. 15.
    Beletskaya, I.P. and Ananikov, V.P., Eur. J. Org. Chem., 2007, p. 3431.Google Scholar
  16. 16.
    Ananikov, V.P. and Beletskaya, I.P., Org. Biomol. Chem., 2004, vol. 2, p. 284.CrossRefGoogle Scholar
  17. 17.
    Ananikov, V.P., Kabeshov, M.A., and Beletskaya, I.P., Synlett, 2005, p. 1015.Google Scholar
  18. 18.
    Ananikov, V.P. and Beletskaya, I.P., Izv. Ross. Akad. Nauk, Ser. Khim., 2004, p. 534.Google Scholar
  19. 19.
    Ananikov, V.P., Orlov, N.V., and Beletskaya, I.P., Izv. Ross. Akad. Nauk, Ser. Khim., 2005, p. 569.Google Scholar
  20. 20.
    Ananikov, V.P., Gayduk, K.A., Beletskaya, I.P., Khrustalev, V.N., and Antipin, M.Yu., Chem. Eur. J., 2008, vol. 14, p. 2420.CrossRefGoogle Scholar
  21. 21.
    Ananikov, V.P., Kabeshov, M.A., Beletskaya, I.P., Aleksandrov, G.G., and Eremenko, I.L., J. Organomet. Chem., 2003, vol. 687, p. 451.CrossRefGoogle Scholar
  22. 22.
    Beletskaya, I.P. and Ananikov, V.P., Pure Appl. Chem., 2007, vol. 79, p. 1041.CrossRefGoogle Scholar
  23. 23.
    Metal-Catalyzed Cross-Coupling Reactions, de Meijere, A. and Diederich, F., Eds., Weinheim: Wiley, 2004, 2nd ed.Google Scholar
  24. 24.
    Description and Specifications of micrOTOF II Control 2.3 and Compass 1.3″, Bremen, Germany: Bruker Daltonics, 2008.Google Scholar
  25. 25.
    Ananikov, V.P., Orlov, N.V., and Beletskaya, I.P., Organometallics, 2006, vol. 25, p. 1970.CrossRefGoogle Scholar
  26. 26.
    Pedersen, D.S. and Rosenbohm, C., Synthesis, 2001, p. 2431.Google Scholar
  27. 27.
    Becke, A.D., Phys. Rev. A, 1988, vol. 38, p. 3098.CrossRefGoogle Scholar
  28. 28.
    Lee, C., Yang, W., and Parr, R.G., Phys. Rev. B, 1988, vol. 37, p. 785.CrossRefGoogle Scholar
  29. 29.
    Becke, A.D., J. Chem. Phys., 1993, vol. 98, p. 5648.CrossRefGoogle Scholar
  30. 30.
    Schwerdtfeger, P., Dolg, M., Schwarz, W.H., Bowmaker, G.A., and Boyd, P.D.W., J. Chem. Phys., 1989, vol. 91, p. 1762.CrossRefGoogle Scholar
  31. 31.
    Andrae, D., Haubermann, U., Dolg, M., Stoll, H., and Preuss, H., Theor. Chim. Acta, 1990, vol. 77, p. 123.CrossRefGoogle Scholar
  32. 32.
    Bergner, A., Dolg, M., Kyachle, W., Stoll, H., and Preuss, H., Mol. Phys., 1993, vol. 80, p. 1431.CrossRefGoogle Scholar
  33. 33.
    Krishnan, R., Binkley, J.S., Seeger, R., and Pople, J.A., J. Chem. Phys., 1980, vol. 72, p. 650.CrossRefGoogle Scholar
  34. 34.
    McLean, A.D. and Chandler, G.S., J. Chem. Phys., 1980, vol. 72, p. 5639.CrossRefGoogle Scholar
  35. 35.
    Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, J.A., Jr., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., and Pople, J.A., Gaussian 03., Pittsburgh PA: Gaussian, 2003.Google Scholar
  36. 36.
    Schaftenaar, G. and Noordik, J.H., J. Comput.-Aided Mol. Des., 2000, vol. 14, p. 123.CrossRefGoogle Scholar
  37. 37.
    Allouche, A.R., GABEDIT—A Graphical User Interface for Computational Chemistry Packages; http://gabedit.sourceforge.net.
  38. 38.
    Sheldrick, G.M., SADABS, v. 2.03, Bruker/Siemens Area Detector Absorption Correction Program, Madison, Wisconsin: Bruker AXS, 2003.Google Scholar
  39. 39.
    Sheldrick, G.M., Acta Crystallogr., Sect. A, 2008, vol. 64, p. 112.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • V. P. Ananikov
    • 1
  • A. O. Piroyan
    • 1
  • K. A. Gaiduk
    • 1
  • I. P. Beletskaya
    • 2
  • V. N. Khrustalev
    • 3
  • M. Yu. Antipin
    • 3
  1. 1.Zelinskii Institute of Organic ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.Faculty of ChemistryMoscow State UniversityMoscowRussia
  3. 3.Nesmeyanov Institute of Organometallic CompoundsRussian Academy of SciencesMoscowRussia

Personalised recommendations