Russian Journal of Organic Chemistry

, Volume 44, Issue 3, pp 358–361 | Cite as

Microwave-assisted synthesis of amides from various amines and benzoyl chloride under solvent-free conditions: A rapid and efficient method for selective protection of diverse amines

  • Yanqiu Li
  • Yulu Wang
  • Jinye Wang


A number of structurally diverse amides were synthesized by reaction of the corresponding amines with benzoyl chloride under microwave irradiation. The proposed procedure ensures short reaction time, high yields, and excellent selectivity and considerably broadens the series of amines as compared to the microwave-assisted synthesis of amides directly from carboxylic acids. It can also be used for selective protection of various amines, including aromatic, aliphatic, and heterocyclic.


Amide Microwave Irradiation Reactant Ratio Phthalimide Benzoyl Chloride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albericio, F., Curr. Opin. Chem. Biol., 2004, vol. 8, p. 211.CrossRefGoogle Scholar
  2. 2.
    Singh, G.S., Tetrahedron, 2003, vol. 59, p. 7631.CrossRefGoogle Scholar
  3. 3.
    Sheehan, J.C. and Hess, G.P., J. Am. Chem. Soc., 1955, vol. 77, p. 1067.CrossRefGoogle Scholar
  4. 4.
    Vago, I. and Greiner, I., Tetrahedron Lett., 2002, vol. 43, p. 6039; Girard, C., Tranchant, I., Nioré, P.-A., and Herscoviei, J., Synlett, 2000, p. 1577; Jang, D.O., Park, D.J., and Kim, J., Tetrahedron Lett., 1999, vol. 40, p. 5323; Cho, D.H. and Jang, D.O., Tetrahedron Lett., 2004, vol. 45, p. 2285.CrossRefGoogle Scholar
  5. 5.
    Loupy, A., Petit, A., Hamelin, J., Texier-Boullet, F., Jacquault, P., and Mathé, D., Synthesis, 1998, p. 1213.Google Scholar
  6. 6.
    Kappe, C.O., Angew. Chem., Int. Ed., 2004, vol. 43, p. 6250.CrossRefGoogle Scholar
  7. 7.
    Lidstrom, P., Tierney, J., Wathey, B., and Westman, J., Tetrahedron, 2001, vol. 57, p. 9225.CrossRefGoogle Scholar
  8. 8.
    Caddik, S., Tetrahedron, 1995, vol. 51, p. 10 403.Google Scholar
  9. 9.
    Kuhnert, N., Angew. Chem., Int. Ed., 2002, vol. 41, p. 1863.CrossRefGoogle Scholar
  10. 10.
    Varma, R.S., Green Chem., 1999, vol. 1, p. 43.CrossRefGoogle Scholar
  11. 11.
    Vasquez-Tato, M.P., Synlett, 1993, p. 506.Google Scholar
  12. 12.
    Perreux, L., Loupy, A., and Volatron, F., Tetrahedron, 2002, vol. 58, p. 2155.CrossRefGoogle Scholar
  13. 13.
    Goretski, C., Krlej, A., Steffens, C., and Ritter, H., Macromol. Rapid Commun., 2004, vol. 25, p. 513.CrossRefGoogle Scholar
  14. 14.
    Gelens, E., Smeets, L., Sliedregt, L.A.J.M., Van-Steen, B.J., Kruse, R.L., and Orru, R.V.A., Tetrahedron Lett., 2005, vol. 46, p. 3751.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  1. 1.College of Chemistry and Environmental Science, Key Laboratory of Environmental Pollution Control Technology of Henan ProvinceHenan Normal UniversityXinxiangP.R. China
  2. 2.Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiP.R. China
  3. 3.Shanghai Institute of Organic ChemistryChinese Academy of SciencesShanghaiP.R. China

Personalised recommendations