Russian Journal of Organic Chemistry

, Volume 43, Issue 7, pp 1065–1079 | Cite as

New type of transannular reactions in azirine-fused medium-size heterocycles: Selective transformations of azirino[2,1-e][1,6]benzoxazocines and -benzothiazocines into oxa(thia)zine and oxa(thia)zole derivatives

  • E. Yu. Shinkevich
  • M. S. Novikov
  • A. F. Khlebnikov
  • R. R. Kostikov
  • J. Kopf
  • J. Magull
Article

Abstract

Opening of the three-membered ring in heterocyclic systems incorporating a dichloroaziridine ring fused to eight-membered O,N-or S,N-heterocycles is accompanied by transannular reactions with participation of the endocyclic oxygen and sulfur atoms. Depending on the conditions, the products are 1,4-benzoxazine (1,4-benzothiazine) or 1,3-benzoxazole (1,3-benzothiazole) derivatives. The discovered transformations were used as a basis of methods for the preparation of new heterocyclic systems, 2,3,4,4a-tetrahydro-1H-pyrido-[3,2-b][1,4]benzoxa(thia)zine derivatives, in domino or consecutive modes, as well as of pyrrolidinyl-substituted 1,3-benzoxa(thia)zoles.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cope, A.C., Martin, M.M., and McKervey, M.A. Q. Rev. Chem. Soc., 1966, vol. 20, p. 119.CrossRefGoogle Scholar
  2. 2.
    Harrowven, D.C. and Pattenden, G., Comprehensive Organic Synthesis: Selectivity, Strategy, and Efficiency in Modern Organic Chemistry, Trost, B.M. and Fleming, I., Eds., Oxford: Pergamon, 1991, vol. 3, p. 379.Google Scholar
  3. 3.
    Cane, D.E., Chem. Rev., 1990, vol. 90, p. 1089.CrossRefGoogle Scholar
  4. 4.
    Marsault, E., Toro, A., Novak, P., and Deslongchamps, P., Tetrahedron, 2001, vol. 57, p. 4243.CrossRefGoogle Scholar
  5. 5.
    Hodgson, D.M. and Cameron, I.D., Org. Lett., 2001, vol. 3, p. 441.CrossRefGoogle Scholar
  6. 6.
    Müller, P., Riegert, D., and Bernardinelli, G., Helv. Chim. Acta, 2004, vol. 87, p. 227.CrossRefGoogle Scholar
  7. 7.
    Haufe, G., Wolf, A., and Schulze, K., Tetrahedron, 1986, vol. 42, p. 4719.CrossRefGoogle Scholar
  8. 8.
    Haufe, G., Alvernhe, G., and Laurent, A., Tetrahedron Lett., 1986, vol. 27, p. 4449.CrossRefGoogle Scholar
  9. 9.
    Lin, C. T., Wang, N.J., Tseng, H.Z., and Chou, T.C., J. Org. Chem., 1997, vol. 62, p. 4857.CrossRefGoogle Scholar
  10. 10.
    Haufe, G., Rolle, U., Kleinpeter, E., Kivikoski, J., and Rissanen, K.N., J. Org. Chem., 1993, vol. 58, p. 7084.CrossRefGoogle Scholar
  11. 11.
    Basak, A., Roy, S.K., and Mandal, S., Angew. Chem., Int. Ed., 2005, vol. 44, p. 132.CrossRefGoogle Scholar
  12. 12.
    Bieraugel, H., Jansen, T.P., Schoemaker, H.E., Hiemstra, H., and van Maarseveen, J.H., Org. Lett., 2002, vol. 4, p. 2673.CrossRefGoogle Scholar
  13. 13.
    Sudau, A., Munch, W., Bats, J.W., and Nubbemeyer, U., Chem. Eur. J., 2001, vol. 7, p. 611.CrossRefGoogle Scholar
  14. 14.
    Hodgson, D.M. and Robinson, L.A., Chem. Commun., 1999, p. 309.Google Scholar
  15. 15.
    Haufe, G. and Muhlstadt, M., Tetrahedron Lett., 1984, vol. 25, p. 1777.CrossRefGoogle Scholar
  16. 16.
    Kuhnert, S.M. and Maier, M.E., Org. Lett., 2002, vol. 4, p. 643.CrossRefGoogle Scholar
  17. 17.
    Rosales, A., Estevez, R.E., Cuerva, J.M., and Oltra, J.E., Angew. Chem., Int. Ed., 2005, vol. 44, p. 319.CrossRefGoogle Scholar
  18. 18.
    Dobson, T.A., Davis, M.A., Hartung, A.M., and Manson, J.M., Can. J. Chem., 1967, vol. 46, p. 2843.CrossRefGoogle Scholar
  19. 19.
    Cere, V., Peri, F., Pollicino, S., and Antonio, A., J. Chem. Soc., Perkin Trans. 2, 1998, p. 977.Google Scholar
  20. 20.
    Khlebnikov, A.F., Novikov, M.S., Shinkevich, E.Yu., and Vidovic, D., Org. Biomol. Chem., 2005, vol. 3, p. 4040.CrossRefGoogle Scholar
  21. 21.
    Kostikov, R.R., Khlebnikov, A.F., and Ogloblin, K.A., Zh. Org. Khim., 1975, vol. 11, p. 585.Google Scholar
  22. 22.
    Kostikov, R.R., Khlebnikov, A.F., and Ogloblin, K.A., Khim. Geterotsikl. Soedin., 1978, p. 48.Google Scholar
  23. 23.
    Seno, M., Shiraishi, S., Suzuki, Y., and Asahara, T., Bull. Chem. Soc. Jpn., 1976, vol. 49, p. 1893.CrossRefGoogle Scholar
  24. 24.
    Khlebnikov, A.F. and Kostikov, R.R., Khim. Geterotsikl. Soedin., 1984, p. 912.Google Scholar
  25. 25.
    Meilahn, M.K., Olsen, D.K., Brittain, W.J., and Anders, R.T., J. Org. Chem., 1978, vol. 43, p. 1346.CrossRefGoogle Scholar
  26. 26.
    Khlebnikov, A.F., Nikiforova, T.Yu., Novikov, M.S., and Kostikov, R.R., Russ. J. Org. Chem., 1997, vol. 33, p. 885.Google Scholar
  27. 27.
    Khlebnikov, A.F., Nikiforova, T.Yu., Novikov, M.S., and Kostikov, R.R., Synthesis, 1997, p. 677.Google Scholar
  28. 28.
    Florio, S., Ingrosso, G., Ronzini, L., and Epifani, E., Tetrahedron, 1991, vol. 47, p. 3365.CrossRefGoogle Scholar
  29. 29.
    Charton, J., Girault-Mizzi, S., Debreu-Fontane, M.-A., Foufelle, F., Hainault, I., Bizot-Espiard, J.-G., Caignard, D.-H., and Sergheraenrt, C., Bioorg. Med. Chem., 2006, vol. 14, p. 4490.CrossRefGoogle Scholar
  30. 30.
    Temiz-Arpaci, O., Aki-Sener, E., Yalcin, I., and Altanlar, N., Arch. Pharm. (Weinheim), 2002, vol. 335, p. 283.CrossRefGoogle Scholar
  31. 31.
    Delmas, F., Di Giorgio, C., Robin, M., Azas, N., Gasquet, M., Detang, C., Costa, M., Timon-David, P., and Galy, J.-P., Antimicrob. Agents Chemother., 2002, vol. 46, p. 2588.CrossRefGoogle Scholar
  32. 32.
    Press, J.B. and Eudy, N.H., J. Org. Chem., 1984, vol. 49, p. 116.CrossRefGoogle Scholar
  33. 33.
    Weberg, R.T., Haltiwanger, R.C., Laurie, J.C.V., and Dubois, M.R., J. Am. Chem. Soc., 1986, vol. 108, p. 6242.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • E. Yu. Shinkevich
    • 1
  • M. S. Novikov
    • 1
  • A. F. Khlebnikov
    • 1
  • R. R. Kostikov
    • 1
  • J. Kopf
    • 2
  • J. Magull
    • 3
  1. 1.St. Petersburg State UniversitySt. PetersburgRussia
  2. 2.Institute of Inorganic ChemistryHamburgGermany
  3. 3.Institute of Inorganic ChemistryGeorg-August UniversityGöttingenGermany

Personalised recommendations