Advertisement

Russian Journal of Organic Chemistry

, Volume 42, Issue 2, pp 175–182 | Cite as

Polarization effect in radical cations and H-complexes

  • A. N. Egorochkin
  • O. V. Kuznetsova
Article

Abstract

The effect of substituents X on the ionization potentials IP (process DX + hν ➙ DX + e) and shifts in vibration frequencies Δν of ν(OH) in the IR spectra of phenol complexes PhO-H + DX ⇄ PhOδ−-H…Dδ+X for nine series of DX molecules were studied. On compiling with three conditions (a constant donor center D; the electron density donation only from D and not from X; a constant sampling size within each series) it was possible to compare the polarization effect in DX and Dδ+X. In the radical cations DX the polarization effect is on the average 2.2 times larger than in the systems Dδ+X. The systems DX and Dδ+X are virtually indistinguishable with respect to the external delocalization of the positive charge.

Keywords

Phenol Organic Chemistry Positive Charge Radical Cation Ionization Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Egorochkin, A.N. and Voronkov, M.G., Elektronnoe stroenie organicheskikh soedinenii kremniya germaniya i olova (Electronic Structure of Organic Compounds of Silicium, Germanium, and Stroncium), Novosibirsk: Izd. SO RAN, 2000, p. 615.Google Scholar
  2. 2.
    Taft, R.W. and Topsom, R.D., Prog. Phys. Org. Chem., 1987, vol. 16, p. 1.Google Scholar
  3. 3.
    Hansch, C., Leo, A., and Taft, R.W. Chem. Rev., 1991, vol. 91, p. 165.CrossRefGoogle Scholar
  4. 4.
    Egorochkin, A.N., Skobeleva, S.E., and Mushtina, T.G., Izv. Akad. Nauk, Ser. Khim., 1998, p. 1481.Google Scholar
  5. 5.
    Egorochkin, A.N., Voronkov, M.G., Skobeleva, S.E., Mushtina, T.G., and Zderenova, O.V., Izv. Akad. Nauk, Ser. Khim., 2000, p. 25.Google Scholar
  6. 6.
    Egorochkin, A.N., Voronkov, M.G., Skobeleva, S.E., and Zderenova, O.V., Izv. Akad. Nauk, Ser. Khim., 2001, p. 34.Google Scholar
  7. 7.
    Egorochkin, A.N. and Kuznetsova, O.V., Izv. Akad. Nauk, Ser. Khim., 2003, p. 298.Google Scholar
  8. 8.
    Egorochkin, A.N., Zderenova, O.V., and Skobeleva, S.E., Izv. Akad. Nauk, Ser. Khim., 2000, p. 1002.Google Scholar
  9. 9.
    Egorochkin, A.N. and Kuznetsova, O.V., Izv. Akad. Nauk, Ser. Khim., 2002, p. 881.Google Scholar
  10. 10.
    Dewar, M. and Dougherty, R., The PMO Theory of Organic Chemistry, New York: Plenum Press, 1975.Google Scholar
  11. 11.
    Ingold, C.K., Structure and Mechanism in Organic Chemistry, Ithaca: Cornell Univ., 1969, 2nd ed.Google Scholar
  12. 12.
    Joesten, M.D. and Schaad, L.J., Hydrogen Bonding, New York, 1974, 609 p.Google Scholar
  13. 13.
    Vovna, V.I., Elektronnaya struktura organicheskikh soedinenii (Electronic Structure of Organic Compounds), Moscow: Nauka, 1991, 247 p.Google Scholar
  14. 14.
    Ohno, K., Matsumoto, S., Imai, K., and Harada, Y., J. Phys. Chem., 1984, vol. 88, p. 206.Google Scholar
  15. 15.
    Allerhand, A. and von R. Schleyer, P., J. Am. Chem. Soc., 1963, vol. 85, p. 866.Google Scholar
  16. 16.
    Holmes, J.L., Fingas, M., and Lossing, F.P., Can. J. Chem., 1981, vol. 59, p. 80.Google Scholar
  17. 17.
    Jones, D., Modelli, A., Olivato, P.R., Dal Colle, M., de Palo, M., and Distefano, D., J. Chem. Soc., Perkin Trans. 2, 1994, p. 1651.Google Scholar
  18. 18.
    Koppel’, I.A. and Payu, A.I., Reakts. Sposobn. Org. Soedin., 1974, vol. 11, p. 121.Google Scholar
  19. 19.
    Gramstad, T., Acta Chem. Scand., 1961, vol. 15, p. 1337.Google Scholar
  20. 20.
    Rassadin, B.V. and Iogansen, A.V., Zh. Prikl. Spektr., 1967, vol. 6, p. 801.Google Scholar
  21. 21.
    Raevskii, O.A., Khalitov, F.G., and Donskaya, Yu.A., Izv. Akad. Nauk SSSR, Ser. Khim., 1972, p. 513.Google Scholar
  22. 22.
    Raevskaya, O.E., Cherkasov, R.A., Kutyrev, G.A., and Pudovik, A.N., Zh. Obshch. Khim., 1974, vol. 44, p. 746.Google Scholar
  23. 23.
    Bock, H. and Solouki, B., Chem. Ber., 1974, vol. 107, p. 2299.Google Scholar
  24. 24.
    Sara, V., Moravec, J., Horak, V., and Horak, M., Collect. Czech. Chem. Commun., 1969, vol. 34, p. 2390.Google Scholar
  25. 25.
    Trofimov, B.A., Shergina, N.I., Kositsyna, E.I., Vyalykh, E.P., Amosova, S.V., Gusarova, N.K., and Voronkov, M.G., Reakts. Sposobn. Org. Soedin., 1973, vol. 10, p. 766.Google Scholar
  26. 26.
    Egorochkin, A.N., Skobeleva, S.E., and Tsvetkova, V.L., Metalloorg. Khimiya, 1990, vol. 3, p. 656Google Scholar
  27. 27.
    MacPhee, J.A., Panaye, A., and Dubois, J.-E., Tetrahedron, 1978, vol. 34, p. 3553.CrossRefGoogle Scholar
  28. 28.
    Galkin, V.I. and Cherkasov, R.A., Reakts. Sposobn. Org. Soedin., 1981, vol. 18, p. 111.Google Scholar
  29. 29.
    Kupletskaya, N.B., Kalinichenko, V.N., and Kazitsina, L.A., Zh. Org. Khim., 1974, vol. 10, p. 2594.Google Scholar
  30. 30.
    Van Alem, K., Lodeer, G., and Zuilhof, H., J. Phys. Chem. A, 2000, vol. 104, p. 2780.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  1. 1.Razuvaev Institute of Organometallic ChemistryRussian Academy of SciencesNizhnii NovgorodRussia

Personalised recommendations