Russian Journal of Applied Chemistry

, Volume 92, Issue 2, pp 199–207 | Cite as

Friedel-Crafts Synthesis of New Porous Aromatic Frameworks for Stabilizing Gas Transport Properties of Highly Permeable Glassy Polymers

  • L. A. Kulikov
  • D. S. BakhtinEmail author
  • V. G. Polevaya
  • A. V. Balynin
  • A. L. Maksimov
  • A. V. Volkov
Macromolecular Compounds and Polymeric Materials


Porous aromatic frameworks of new generation, PAF-FC, were prepared by the Friedel-Crafts reaction between tetraphenylmethane and dimethoxymethane and were characterized. The material obtained has the structure similar to that of PAF-11 and exhibits high porosity (SBET = 768 m2 g−1). Introduction of 10 wt % PAF-FC allows stabilization of the gas transport characteristics of poly[1-trimethylsilyl–1-propyne] (PTMSP) in time. For example, after 500-h annealing at 100°C, the CO2 permeability coefficient of the PTMSP/PAF-FC composite decreased by 15%, whereas the ideal CO2/N2 selectivity increased from 5.6 to 6.1. The resultant gas transport characteristics appeared to be comparable to those of the previously studied porous aromatic frameworks PAF-11. It should be noted that synthesis of PAF–11 requires using expensive chemicals in large amounts, whereas PAF-FC synthesis by linking of aromatic fragments of monomeric monomers using the Friedel-Crafts reaction is much simpler and involves the use of considerably less expensive chemicals.


PAF-FC porous aromatic frameworks PTMSP physical aging gas separation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yampolskii, Y. and Finkelshtein, E., Membrane Materials for Gas and Vapor Separation: Synthesis and Application of Silicon-Containing Polymers, Wiley, 2017.CrossRefGoogle Scholar
  2. 2.
    Baker, R.W., Membrane Technology and Applications, Wiley, 2004, 2nd ed.CrossRefGoogle Scholar
  3. 3.
    Vorotyntsev, V.M., Drozdov, P.N., Vorotyntsev, I.V., and Belyaev, E.S., Petrol. Chem., 2011, vol. 51, no. 8, pp. 595–600.CrossRefGoogle Scholar
  4. 4.
    Trubyanov, M.M., Drozdov, P.N., Atlaskin, A.A., Battalov, S.V., Puzanov, E.S., Vorotyntsev, A.V., and Vorotyntsev, I.V., J. Membr. Sci., 2017, vol. 530, pp. 53–64.CrossRefGoogle Scholar
  5. 5.
    Lau, C.H., Nguyen, P.T., Hill, M.R., Thornton, A.W., Konstas, K., Doherty, C.M., Mulder, R.J., Bourgeois, L., Liu, A.C.Y., Sprouster, D.J., Sullivan, J.P., Bastow, T.J., Hill, A.J., Gin, D.L., and Noble, R.D., Angew. Chem., 2014, vol. 126, pp. 5426–5430.CrossRefGoogle Scholar
  6. 6.
    Lau, C.H., Nguyen, P.T., Hill, M.R., Thornton, A.W., Konstas, K., Doherty, C.M., Mulder, R.J., Bourgeois, L., Liu, A.C.Y., Sprouster, D.J., Sullivan, J.P., Bastow, T.J., Hill, A.J., Gin, D.L., and Noble, R.D., Angew. Chem., Int. Ed., 2014, vol. 53, pp. 5322–5326.CrossRefGoogle Scholar
  7. 7.
    Lau, C.H., Konstas, K., Doherty, C.M., Kanehashi, S., Ozcelik, B., Kentish, S.E., and Hill, M.R., Chem. Mater., 2015, vol. 27, no. 13, pp. 4756–4762.CrossRefGoogle Scholar
  8. 8.
    Lau, C.H., Konstas, K., Thornton, A.W., Liu, A.C., Mudie, S., Kennedy, D.F., and Hill, M.R., Angew. Chem., Int. Ed., 2015, vol. 54, no. 9, pp. 2669–2673.CrossRefGoogle Scholar
  9. 9.
    Kitchin, M., Teo, J., Konstas, K., Lau, C.H., Sumby, C.J., Thornton, A.W., Doonan, C.J., and Hill, M.R., J. Mater. Chem. A, 2015, vol. 3, p. 15241.CrossRefGoogle Scholar
  10. 10.
    Volkov, A.V., Bakhtin, D.S., Kulikov, L.A., Terenina, M.V., Golubev, G.S., Bondarenko, G.N., Legkov, S.A., Shandryuk, G.A., Volkov, V.V., Khotimskiy, V.S., Belogorlov, A.A., Maksimov, A.L., and Karakhanov, E.A., J. Membr. Sci., 2016, vol. 517, pp. 80–90.CrossRefGoogle Scholar
  11. 11.
    Bakhtin, D.S., Kulikov, L.A., Legkov, S.A., Khotimskiy, V.S., Levin, I.S., Borisov, I.L., Maksimov, A.L., Volkov, V.V., Karakhanov, E.A., and Volkov, A.V., J. Membr. Sci., 2018, vol. 554, pp. 211–220.CrossRefGoogle Scholar
  12. 12.
    Bakhtin, D.S., Kulikov, L.A., Bondarenko, G.N., Vasilevskii, V.P., Maksimov, A.L., and Volkov, A.V., Petrol. Chem., 2018, vol. 58, no. 9, pp. 790–796.CrossRefGoogle Scholar
  13. 13.
    Cheng, X.Q., Konstas, K., Doherty, C.M., Wood, C.D., Mulet, X., Xie, Z., and Lau, C.H., ACS Appl. Mater. Interfaces, 2017, vol. 9, no. 16, pp. 14401–14408.CrossRefPubMedGoogle Scholar
  14. 14.
    Zhiqian, J., Hao, S., and Jiang, M., J. Chem. Technol. Biotechnol, 2018, vol. 93, pp. 3276–3283.CrossRefGoogle Scholar
  15. 15.
    Wu, X., Shaibani, M., Smith, S.J., Konsta, K., Hill, M.R., Wang, H., and Xie, Z., J. Mater. Chem. A, 2018, vol. 6, no. 24, pp. 11327–11336.CrossRefGoogle Scholar
  16. 16.
    Yu, G., Rong, H., Zou, X., and Zhu, G., Mol. Syst. Des. Eng., 2017, vol. 2, no. 3, pp. 182–190.CrossRefGoogle Scholar
  17. 17.
    Cheng, Y., Ying, Y., Japip, S., Jiang, S.D., Chung, T.S., Zhang, S., and Zhao, D., Adv. Mater, 2018, p. 1802401.Google Scholar
  18. 18.
    Yushkin, A., Grekhov, A., Matson, S., Bermeshev, M., Khotimsky, V., Finkelstein, E., Budd, P.M., Volkov, V., Vlugt, T.J.H., and Volkov, A., React. Funct. Polym., 2015, vol. 86, pp. 269–281.CrossRefGoogle Scholar
  19. 19.
    Freeman, B., Yampolskii, Y., and Pinnau, I., Materials Science of Membranes for Gas and Vapor Separation, Wiley, 2006.Google Scholar
  20. 20.
    Bermeshev, M.V. and Chapala, P.P., Prog. Polym. Sci., 2018, vol. 84, pp. 1–46.CrossRefGoogle Scholar
  21. 21.
    Zhang, Y., Li, B., and Ma, S., Chem. Commun., 2014, vol. 50, no. 62, pp. 8507–8510.CrossRefGoogle Scholar
  22. 22.
    Karakhanov, E., Kardasheva, Y., Kulikov, L., Maximov, A., Zolotukhina, A., Vinnikova, M., and Ivanov, A., Catalysts, 2016, vol. 6, no. 8, p. 122.CrossRefGoogle Scholar
  23. 23.
    Maximov, A., Zolotukhina, A., Kulikov, L., Kardasheva, Y., and Karakhanov, E., Mech. Catal., 2016, vol. 117, no. 2, pp. 729–743.Google Scholar
  24. 24.
    Kulikov, L.A., Terenina, M.V., Kryazheva, I.Y., and Karakhanov, E.A., Petrol. Chem., 2017, vol. 57, no. 3, pp. 222–229.CrossRefGoogle Scholar
  25. 25.
    Wang, L., Jia, J., Faheem, M., Tian, Y., and Zhu, G., J. Ind. Eng. Chem., 2018, vol. 67, pp. 373–379.CrossRefGoogle Scholar
  26. 26.
    Ben, T., Ren, H., Ma, S., Cao, D., Lan, J., Jing, X., and Qiu, S., Angew. Chem., 2009, vol. 121, no. 50, pp. 9621–9624.CrossRefGoogle Scholar
  27. 27.
    Yuan, Y., Sun, F., Ren, H., Jing, X., Wang, W., Ma, H., and Zhu, G., J. Mater. Chem., 2011, vol. 21, no. 35, pp. 13498–13502.CrossRefGoogle Scholar
  28. 28.
    Ren, H., Ben, T., Sun, F., Guo, M., Jing, X., Ma, H., and Zhu, G., J. Mater. Chem., 2011, vol. 21, no. 28, pp. 10348–10353.CrossRefGoogle Scholar
  29. 29.
    Rose, M., Böhlmann, W., Sabo, M., and Kaskel, S., Chem. Commun., 2008, no. 21, pp. 2462–2464.Google Scholar
  30. 30.
    Hausoul, P.J., Eggenhuisen, T.M., Nand, D., Baldus, M., Weckhuysen, B.M., Gebbink, R.J.K., and Bruijnincx, P.C., Catal. Sci. Technol., 2013, vol. 3, no. 10, p. 2571.CrossRefGoogle Scholar
  31. 31.
    Li, L., Ren, H., Yuan, Y., Yu, G., and Zhu, G., J. Mater. Chem. A, 2014, vol. 2, no. 29, pp. 11091–11098.CrossRefGoogle Scholar
  32. 32.
    Luo, Q., Zhao, C., Liu, G., and Ren, H.A., Sci. Rep., 2016, vol. 6, no. 1, p. 20311.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Khotimsky, V.S., Tchirkova, M.V., Litvinova, E.G., Rebrov, A.I., and Bondarenko, G.N., J. Polym. Sci., Part A: Polym. Chem., 2003, vol. 41, pp. 2133–2155.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • L. A. Kulikov
    • 1
    • 2
  • D. S. Bakhtin
    • 1
    Email author
  • V. G. Polevaya
    • 1
  • A. V. Balynin
    • 1
  • A. L. Maksimov
    • 1
    • 2
  • A. V. Volkov
    • 1
  1. 1.Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia
  2. 2.Moscow State UniversityMoscowRussia

Personalised recommendations