Russian Journal of Applied Chemistry

, Volume 91, Issue 12, pp 1994–2002 | Cite as

Electromagnetic Parameters of Composite Materials Based on Polyethylene and Multi-Walled Carbon Nanotubes Modified by Iron Oxide Nanoparticles

  • M. A. KazakovaEmail author
  • E. Yu. Korovin
  • S. I. Moseenkov
  • A. S. Kachalov
  • D. I. Sergeenko
  • A. V. Shuvaev
  • V. L. Kuznetsov
  • V. I. Suslyaev
Composite Materials


Specific features are revealed of how composite materials are formed on the basis of polyethylene and multi-walled carbon nanotubes modified with iron oxide nanoparticles (Fe3O4/MWCNT–PE), produced by the mechanical mixing method from a polyethylene melt. The conditions in which the composite materials are obtained were optimized to provide a uniform distribution of the Fe3O4/MWCNT filler in the polyethylene matrix. The influence exerted by the Fe3O4/MWCNT filler on the electrical properties of the resulting composite materials was determined. Introduction of Fe3O4 nanoparticles gives rise to magnetic properties of a composite material in the frequency range from 1 kHz to 2 MHz. An analysis of the frequency dependences of reflectance, transmittance and absorbance demonstrated that an increase in the sample thickness leads to a higher reflectance and lower transmittance. The composite materials can be used to create coatings lowering the electromagnetic radiation intensity by up to 40%. It was shown that increasing the content of Fe3O4/MWCNT to more than 10 wt % leads to a decrease in both the electrical conductivity and the complex dielectric permittivity and magnetic permeability of the composite material. This occurs due to the decrease in the flowability of the polymer material and to the resulting nonuniform distribution of the filler in the bulk of polyethylene.


polymer composite materials multi-walled carbon nanotubes iron oxide nanoparticles electromagnetic properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Khan, W., Sharma, R., and Saini, P., Carbon Nanotubes–Current Progress of Their Polymer Composites, Berber, M.R. and Hafez, I.H., Eds.,. Rijeka: InTech, 2016.Google Scholar
  2. 2.
    Spitalsky, Z., Tasis, D., Papagelis, K., and Galiotis, C., Prog. Polym. Sci. 2010, vol. 35, no. 3, pp. 357–401.Google Scholar
  3. 3.
    Liu, Y. and Kumar, S., ACS Appl. Mater. Interfaces, 2014, vol. 6, no. 9, pp. 6069–6087.Google Scholar
  4. 4.
    Verma, P., Saini, P., Malik, R.S., and Choudhary, V., Carbon, 2015, vol. 89, no, pp. 308–317.Google Scholar
  5. 5.
    De Volder, M.F.L., Tawfick, S.H., Baughman, R.H., and Hart, A.J., Science, 2013, vol. 339, no. 6119, pp. 535–539.Google Scholar
  6. 6.
    Carbon Nanotubes: Synthesis, Structure, Properties, and Applications, Dresselhaus, M.S., Dresselhaus, G., and Avouris, P., Berlin Heidelberg: Springer–Verlag, 2001.Google Scholar
  7. 7.
    Wei, Y., Lin, X., Jiang, K., Liu, P., Li, Q., and Fan, S., Nano Lett. 2013, vol. 13, no. 10, pp. 4795–4801.Google Scholar
  8. 8.
    Kuznetsov, V.L., Suslyaev, V.I., Dorofeev, I.O., Kazakova, M.A., Moseenkov, S.I., Smirnova, T.E., and Krasnikov, D.V., Phys. Status Solidi B 2015, vol. 252, no. 11, pp. 2519–2523.Google Scholar
  9. 9.
    Arash, B., Wang, Q., and Varadan, V.K., Sci. Rep. 2014, vol. 4, p. 6479 (1–8).Google Scholar
  10. 10.
    Zhang, D., Xu, F., Lin, J., Yang, Z., and Zhang, M., Carbon, 2014, vol. 80, N Supplement C, pp. 103–111.Google Scholar
  11. 11.
    Kazakova, M.A., Semikolenova, N.V., Korovin, E.Y., Moseenkov, S.I., Andreev, A.S., Kachalov, A.S., Kuznetsov, V.L., Suslyaev, V.I., Mats’ko, M.A., and Zakharov, V.A., Russ. J. Appl. Chem. 2018, vol. 91, no. 1, pp. 127–135.Google Scholar
  12. 12.
    Andreev, A.S., Kazakova, M.A., Ishchenko, A.V., Selyutin, A.G., Lapina, O.B., Kuznetsov, V.L., and d′Espi nose de Lacaillerie, J.-B., Carbon 2017, vol. 114, pp. 39–49.Google Scholar
  13. 13.
    Kazakova, M.A., Kuznetsov, V.L., Semikolenova, N.V., Moseenkov, S.I., Krasnikov, D.V., Matsko, M.A., Ishchenko, A.V., Zakharov, V.A., Romanenko, A.I., Anikeeva, O.B., Tkachev, E.N., Suslyaev, V.I., Zhuravlev, V.A., and Dorozkin, K.V., Phys. Status Solidi B 2014, vol. 251, no. 12, pp. 2437–2443.Google Scholar
  14. 14.
    Kazakova, M.A., Selyutin, A.G., Semikolenova, N.V., Ishchenko, A.V., Moseenkov, S.I., Matsko, M.A., Zakharov, V.A., and Kuznetsov, V.L., Compos. Sci. Technol. 2018, vol. 167, pp. 148–154.Google Scholar
  15. 15.
    Kazakova, M.A., Kuznetsov, V.L., Bokova-Sirosh, S.N., Krasnikov, D.V., Golubtsov, G.V., Romanenko, A.I., Prosvirin, I.P., Ishchenko, A.V., Orekhov, A.S., Chuvilin, A.L., and Obraztsova, E.D., Phys. Status Solidi B 2018, vol. 255, no. 1, p. 1700260.Google Scholar
  16. 16.
    Andreev, A.S., Krasnikov, D.V., Zaikovskii, V.I., Cherepanova, S.V., Kazakova, M.A., Lapina, O.B., Kuznetsov, V.L., and d’Espinose de Lacaillerie, J.B., J. Catal., 2018, vol. 358, pp. 62–70.Google Scholar
  17. 17.
    Bokova-Sirosh, S.N., Kuznetsov, V.L., Romanenko, A.I., Kazakova, M.A., Krasnikov, D.V., Tkachev, E.N., Yuzyuk, Y.I., and Obraztsova, E.D., J. Nanophoton., 2016, vol. 10, no. 1, p. 012526.Google Scholar
  18. 18.
    Kuznetsov, V.L., Bokova-Sirosh, S.N., Moseenkov, S.I., Ishchenko, A.V., Krasnikov, D.V., Kazakova, M.A., Romanenko, A.I., Tkachev, E.N., and Obraztsova, E.D., Phys. Status Solidi B 2014, vol. 251, no. 12, pp. 2444–2450.Google Scholar
  19. 19.
    Mikheev, G.M., Kuznetsov, V.L., Mikheev, K.G., Mogileva, T.N., Shuvaeva, M.A., and Moseenkov, S.I., Tech. Phys. Lett. 2013, vol. 39, no. 4, pp. 337–340.Google Scholar
  20. 20.
    Boehm, H.P., Carbon 1994, vol. 32, no. 5, pp. 759–769.Google Scholar
  21. 21.
    Kazakova, M.A., Andreev, A.S., Selyutin, A.G., Ishchenko, A.V., Shuvaev, A.V., Kuznetsov, V.L., Lapi na, O.B., and d′Espinose de Lacaillerie, J.-B., Appl. Surf. Sci., 2018, vol. 456, pp. 657–665.Google Scholar
  22. 22.
    Shuvaeva, M.A., Litvak, G.S., Var nek, V.A., and Bukhtiyarova, G.A., Kinet. Catal., 2009, vol. 50, no. 6, pp. 874–877.Google Scholar
  23. 23.
    Elumeeva, K., Kazakova, M.A., Morales, D.M., Medina, D., Selyutin, A., Golubtsov, G., Ivanov, Y., Kuznetzov, V., Chuvilin, A., Antoni, H., Muhler, M., Schuhmann, W., and Masa, J., ChemSusChem. 2018, vol. 11, no. 7, pp. 1204–1214.Google Scholar
  24. 24.
    Drebushchak, V.A., J. Therm. Anal. Calorim., 2004, vol. 76, no. 3, pp. 941–947.Google Scholar
  25. 25.
    Drebushchak, V.A., J. Therm. Anal. Calorim., 2005, vol. 79, no. 1, pp. 213–218.Google Scholar
  26. 26.—site of Toms regional collective use center, 2018. Cited on 18.10.2018.Google Scholar
  27. 27.
    Kong, L.B., Li, Z.W., Liu, L., Huang, R., Abshinova, M., Yang, Z.H., Tang, C.B., Tan, P.K., Deng, C.R., and Matitsine, S., Int. Mater. Rev. 2013, vol. 58, no. 4, pp. 203–259.Google Scholar
  28. 28.
    Zhuravlev, V., Suslyaev, V., Korovin, E., and Dorozhkin, K., Mater. Sci. Appl. 2014, vol. 5, pp. 803–811.Google Scholar
  29. 29.
    Brekhovskii, L.M., Volny v sloistykh sredakh (Waves in Layered Media), Moscow: Nauka, 1973.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • M. A. Kazakova
    • 1
    • 2
    Email author
  • E. Yu. Korovin
    • 3
  • S. I. Moseenkov
    • 2
  • A. S. Kachalov
    • 3
  • D. I. Sergeenko
    • 3
  • A. V. Shuvaev
    • 4
  • V. L. Kuznetsov
    • 1
    • 3
  • V. I. Suslyaev
    • 3
  1. 1.Novosibirsk State UniversityNovosibirskRussia
  2. 2.Boreskov Institute of Catalysis, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  3. 3.Tomsk State UniversityTomskRussia
  4. 4.Siberian State Transport UniversityNovosibirskRussia

Personalised recommendations