Advertisement

Russian Journal of Applied Chemistry

, Volume 91, Issue 12, pp 1905–1911 | Cite as

Sulfide Catalysts for Production of Motor Fuels from Fatty Acid Triglycerides

  • A. A. Porsin
  • E. N. VlasovaEmail author
  • G. A. Bukhtiyarova
  • A. L. Nuzhdin
  • V. I. Bukhtiyarov
Reviews
  • 6 Downloads

Abstract

Patents dealing with the production of motor fuel components by hydrodeoxygenation of renewable raw materials based on fatty acid triglycerides are analyzed. Various methods of using sulfide catalysts in hydrodeoxygenation of fatty acid triglycerides and of their mixtures with petroleum fractions are described. The ways to overcome problems that arise in hydrodeoxygenation, based on using sulfide catalysts differing in the active component and support composition, are considered. For example, the use of supported MoS2 catalysts free of Co and Ni ensures the conversion of fatty acid triglycerides along the “direct hydrodeoxygenation” pathway to avoid the formation of carbon oxides and related process problems. The use of sulfide catalysts on zeolite-containing supports allows synthesis of products with improved low-temperature properties due to isomerization (or mild hydrocracking) of С15–С18 alkanes formed by hydrodeoxygenation of fatty acid triglycerides.

Keywords

fatty acid triglycerides hydrodeoxygenation motor fuels sulfide catalysts 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Huber, G.W., Iborra, S., and Corma, A., Chem. Rev. 2006, vol. 106, no. 9, pp. 4044–4098.CrossRefGoogle Scholar
  2. 2.
    Melero, J.A., Iglesias, J., and Garcia, A., Energy Environ. Sci. 2012, vol. 5, no. 6, pp. 7393–7420.CrossRefGoogle Scholar
  3. 3.
    Yakovlev, V.A., Khromova, S.A., and Bukhtiyarov, V.I., Russ. Chem. Rev. 2011, vol. 80, no. 10, pp. 911–926.CrossRefGoogle Scholar
  4. 4.
    Mittelbach, M., Eur. J. Lipid Sci. Technol. 2015, vol. 117, no. 11, pp. 1832–1846.CrossRefGoogle Scholar
  5. 5.
    Al-Sabawi, M. and Chen, J., Energy Fuels 2012, vol. 26, no. 9, pp. 5373–5399.CrossRefGoogle Scholar
  6. 6.
    Satyarthi, J.K., Chiranjeevi, T., Gokak, D.T., and Viswanathan, P.S., Catal. Sci. Technol. 2013, vol. 3, no. 1, pp. 70–80.CrossRefGoogle Scholar
  7. 7.
    Kubiсka, D. and Tukaс, V., Adv. Chem. Eng. 2013, vol. 42, pp. 141–194.CrossRefGoogle Scholar
  8. 8.
    Melero, J.A., Iglesias, J., and Garcia, A., Energy Environ. Sci. 2012, vol. 5, no. 6, pp. 7393–7420.CrossRefGoogle Scholar
  9. 9.
    Kubicka, D. and Horacek, J., Appl. Catal. 2011, vol. 394, pp. 9–17.CrossRefGoogle Scholar
  10. 10.
    Senol, O.I., Viljava, T.-R., and Krause, A.O.I., Appl. Catal. A 2007, vol. 236, pp. 236–244.CrossRefGoogle Scholar
  11. 11.
    Mawhood, R., Gazis, E., de Jong, S., Hoefnagels, R., and Slade, R., Biofuels, Bioprod. Biorefin., 2016, vol. 10, pp. 462–484.CrossRefGoogle Scholar
  12. 12.
    Kalnes, T. Terry, M., Shonnard, D.R., and Koers, K.P., Environ. Prog. Sust. Energy 2009, vol. 28, pp. 111–120.CrossRefGoogle Scholar
  13. 13.
    Neste Oil Corporation—Company Presentation, Neste Oil. https://tapahtumat.tekes.fi/up loads/013d4138/NO_RD-7349.pdf. Cited Sept. 26, 2018.Google Scholar
  14. 14.
    Advanced Renewable Fuel Alternative to Traditional Diesel, Honeywell UOP, URL: https://www.uop. com/processing-solutions/renewables/greendiesel/# ecofining. Cited Sept. 26, 2018.Google Scholar
  15. 15.
    Honeywell Green Jet Fuel—Advanced Renewable Fuel Alternative to Traditional Jet Fuel, Honeywell UOP. https://www.uop.com/processing-solu tions/renewables/green-jet-fuel/#uop-renewable-jet-fuel-process. Cited Sept. 27, 2018.Google Scholar
  16. 16.
    Axens and Vegan Technology Selected by Total for Its First Biorefinery in France, Axens. https://www.axens.net/news-and-events/news/369/axens-vegan®-technologyselected- by-total-for-its-first-biorefinery-in-france.html#. WgFRQJgY5TZ. Cited Sept. 27, 2018.Google Scholar
  17. 17.
    Profitable Today—Ready for the Future, Halder Topsoe. https://www.topsoe.com/products/hydroflextmtechnology. Cited Sept. 28, 2018.Google Scholar
  18. 18.
    Vasquez, M.C., Silva, E.E., and Castillo, E.F., Biomass Bioenergy 2017, vol. 105, pp. 197–206.CrossRefGoogle Scholar
  19. 19.
    Annual Report, Conoco Phillips. http://www. conocophillips.com/company-reports-resources/annualreport/. Cited Sept. 28, 2018.Google Scholar
  20. 20.
    Tyutyunnikov, B.N., Khimiya zhirov (Chemistry of Fats), Moscow: Kolos, 1992.Google Scholar
  21. 21.
    Patent US 4992605 A, Publ. 1991.Google Scholar
  22. 22.
    Patent US 5705722 A, Publ. 1998.Google Scholar
  23. 23.
    Patent RU 2566762, Publ. 2015.Google Scholar
  24. 24.
    Patent RU 2534993, Publ. 2014.Google Scholar
  25. 25.
    Patent US 8795392 B2, Publ. 2014.Google Scholar
  26. 26.
    Patent US 8084655 B2, Publ. 2011.Google Scholar
  27. 27.
    Patent EP 2639286 A2, Publ. 2013.Google Scholar
  28. 28.
    Patent US 15888019, Publ. 2018.Google Scholar
  29. 29.
    Patent RU 2464297, Publ. 2012.Google Scholar
  30. 30.
    Patent US 8546626 B2, Publ. 2013.Google Scholar
  31. 31.
    Patent US 8552235 B2, Publ. 2013.Google Scholar
  32. 32.
    Patent US 9109168 B2, Publ. 2015.Google Scholar
  33. 33.
    Patent EP 1396531 A2, Publ. 2004.Google Scholar
  34. 34.
    Patent EP 1681337 A1, Publ. 2006.Google Scholar
  35. 35.
    Patent EP 1741768 A1, Publ. 2007.Google Scholar
  36. 36.
    Patent RU 2566763, Publ. 2015.Google Scholar
  37. 37.
    Patent RU 2608522, Publ. 2015.Google Scholar
  38. 38.
    Patent US 8809610 B2, Publ. 2014.Google Scholar
  39. 39.
    Patent US 8912374 B2, Publ. 2014.Google Scholar
  40. 40.
    Patent US 8026401 B2, Publ. 2011.Google Scholar
  41. 41.
    Patemt FR 2951733 B1, Publ. 2012.Google Scholar
  42. 42.
    Patent EP 2226375 A1, Publ. 2010.Google Scholar
  43. 43.
    Patent EP 2428548 A1, Publ. 2012.Google Scholar
  44. 44.
    Patent US 8304592 B2, Publ. 2012.Google Scholar
  45. 45.
    Patent CA 2738932 A1, Publ. 2010.Google Scholar
  46. 46.
    Patent US 8822744 B2, Publ. 2014.Google Scholar
  47. 47.
    Patent US 8912375 B2, Publ. 2014.Google Scholar
  48. 48.
    Patent US 9598645 B2, Publ. 2017.Google Scholar
  49. 49.
    Patent US 9556387 B2, Publ. 2009.Google Scholar
  50. 50.
    Patent RU 2495082, Publ. 2013.Google Scholar
  51. 51.
    Patent US 8686204 B2, Publ. 2014.Google Scholar
  52. 52.
    Patent US 8507738 B2, Publ. 2013.Google Scholar
  53. 53.
    Patent EP 1693432 B1, Publ. 2009.Google Scholar
  54. 54.
    Patent US 8785701 B2, Publ. 2014.Google Scholar
  55. 55.
    Patent WO 2012088145 A2, Publ. 2012.Google Scholar
  56. 56.
    Patent WO 2014065765 A1, Publ. 2014.Google Scholar
  57. 57.
    Patent US 9523046 B2, Publ. 2016.Google Scholar
  58. 58.
    Patent FR 2949475 B1, Publ. 2012 (WO 2011027044 A2).Google Scholar
  59. 59.
    Patent EP 2473274 B1, Publ. 2014.Google Scholar
  60. 60.
    Patent RU 2663669, Publ. 2018.Google Scholar
  61. 61.
    Patent US 7232935 B2, Publ. 2007.Google Scholar
  62. 62.
    Patent RU 2652991, Publ. 2018.Google Scholar
  63. 63.
    Patent US 8884086 B2, Publ. 2014.Google Scholar
  64. 64.
    Patent US 9523050 B2, Publ. 2016.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. A. Porsin
    • 1
  • E. N. Vlasova
    • 1
    • 2
    Email author
  • G. A. Bukhtiyarova
    • 1
    • 2
  • A. L. Nuzhdin
    • 1
  • V. I. Bukhtiyarov
    • 1
    • 2
  1. 1.Boreskov Institute of Catalysis, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk National Research State UniversityNovosibirskRussia

Personalised recommendations