Advertisement

Russian Journal of Applied Chemistry

, Volume 91, Issue 11, pp 1867–1873 | Cite as

Synthesis of Porous Coordination Polymers Comprising Mixed Ligands of Triazole and Amino Triazole under Magnetic Fields and Its Effects in Enhance CO2 Adsorptivity

  • M. ZubirEmail author
  • H. I. Nasution
  • T. F. Sudarma
Sorption and Ion Exchange Processes
  • 4 Downloads

Abstract

A series of porous coordination polymers of Zn-oxac-ATaz (oxac: oxalic acid and ATaz: 3-amino,1,2,4- triazole), Zn-oxac-Taz (Taz: 1,2,4-triazole), and combination of ATaz–Taz ligand with 0.5 molar ratio X of Zn-oxac-Taz/ATaz were synthesized under magnetic fields. There is no even significant XRD pattern change of Zn-oxac-Taz 6T but there are noticeable changes in the morphology of irregular agglomerates at zero field to rectangular-prism crystals with smooth surfaces. Compared to the zero field, it is obvious that magnetic fields also bring significance morphology and crystal orientation change of Zn-oxac-ATaz 4T and Zn-oxac-Taz/ATaz 4T with growth to prolong rectangular morphology. Zn-oxac-Taz/ATaz 0T adsorbed more CO2 (135 mg g–1) at 303 K after heating in a vacuum at 333K for 12 h. It is suggested that the integration effects of pore space and amine group presences inside the frameworks induce to enhance carbon dioxide adsorption amount. Furthermore, due to magnetic fields the CO2 adsorption by Zn-oxac-Taz/ATaz 4T also increases to 155.46 mg g–1 and Langmuir surface areas developed is 467 m2 g–1. Magnetic fields cause interesting phenomena observed in XRD pattern and through morphological changes inducing the enhancement carbon dioxide (CO2) capture in these porous coordination series.

Keywords

porous coordination polymers ATaz–Taz ligands CO2 adsorption 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kitagawa, S., Kitaura, R., and Noro, S., Angew. Chem. Int. Ed, 2014, no. 43, pp. 2334–2375.CrossRefGoogle Scholar
  2. 2.
    Shimomura, S., Horike, S., Matsuda, R., and Kitagawa, S., J. Am. Chem. Soc, 2007, vol. 129 pp. 10990–10991.CrossRefGoogle Scholar
  3. 3.
    Li, H., Eddaoudi, M., Groy, T.L., and Yaghi, O.M., J. Am. Chem. Soc, 1998, pp. 8571–8572.Google Scholar
  4. 4.
    Li, W., Jia, H.P., Ju, Z., and Zhang, J.A., Crystal Growth & Design, 2006, vol. 6, no. 9, pp. 2136–2140.CrossRefGoogle Scholar
  5. 5.
    Garcia-Ricard, O.J., Morales, P.M., Martinez, J.C.S., Curet-Arana, M.C.J., Hogan, A., Hernandez-Maldonado, A.J., Microporous and Mesoporous Materials, 2013, vol. 177, pp. 54–58.CrossRefGoogle Scholar
  6. 6.
    Noro, S., Kitagawa, S., Akutagawa, T., Nakamura, T., Prog. Polym. Sci., 2009, vol. 34, pp. 240–279.CrossRefGoogle Scholar
  7. 7.
    Millward, A.R. and Yaghi, O.M., J. Am. Chem. Soc., 2005, vol. 127, pp. 17998–17999.CrossRefGoogle Scholar
  8. 8.
    Li, H.L. Eddaoudi, M., O’Keeffe, M., and Yaghi, O.M., Nature, 1999, vol. 402, pp. 276–279.CrossRefGoogle Scholar
  9. 9.
    Yang, Q.Y., Xue, C.Y., Zhong, C.L., and Chen, J.F., AICHE J., 2007, vol. 53, pp. 2832–2840.CrossRefGoogle Scholar
  10. 10.
    Arstad, B., Fjellvag, H., Kongshaug, K.O., Swang, O., and Blom, R., Adsorption, 2008, vol. 14 pp. 755–762.CrossRefGoogle Scholar
  11. 11.
    Vaidhyanathan, R., Iremonger, S.S., Dawson, K.W., and Shimizu, G.K.H., Chem. Commun, 2009, pp. 5230–5232.Google Scholar
  12. 12.
    Ozeki, S., Kurashima, H., and Abe, H., J. Phys. Chem. B., 2000, vol. 104, pp. 5657–5660.CrossRefGoogle Scholar
  13. 13.
    Yamaguchi, M. and Tanimoto, Y., Magneto-Science, Springer, Tokyo, 2006.CrossRefGoogle Scholar
  14. 14.
    Saravanan, G. and Ozeki, S., J. Phys. Chem. B., 2008, vol. 112, pp. 3–6.CrossRefGoogle Scholar
  15. 15.
    Ozeki, S. and Otsuka, I., J. Phys. Chem. B., 2006, vol.110, pp. 20067–20072.CrossRefGoogle Scholar
  16. 16.
    Otsuka, I. and Ozeki, S., J. Phys. Chem. B., 2006, vol.110, pp. 1509–1512.CrossRefGoogle Scholar
  17. 17.
    Zubir, M., Hamasaki, A., Ohta, A., Ohki, H., and Ozeki, S., Langmuir, 2017, vol. 33 pp. 680–684.CrossRefGoogle Scholar
  18. 18.
    Zubir, M., Hamasaki, A., Iiyama, T., Ohta, A., Ohki, H., and Ozeki, S., Chem. Lett., 2016, vol. 45, pp. 362–364.CrossRefGoogle Scholar
  19. 19.
    Deng, H.X., Doonan, C.J., Furukawa, H., Ferreira, R.B., Towne, J., Knobler, C.B., Wang, B., and Yaghi, O.M., Science, 2010, vol. 327, pp. 846–850.CrossRefGoogle Scholar
  20. 20.
    Altomare, A., Cuocci, C., Giacovazzo, C., Moliterni, A., Rizzi, R., Corriero, N., and Falcicchio, A., Appl. Cryst., 2013, vol. 46, pp. 1231–1235.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Faculty of Mathematics and Natural ScienceState University of Medan, Jl. Willem Iskandar Pasar V, Medan EstateMedan, North SumateraIndonesia
  2. 2.Faculty of ScienceShinshu UniversityMatsumoto, NaganoJapan

Personalised recommendations