Advertisement

Russian Journal of Applied Chemistry

, Volume 91, Issue 11, pp 1856–1866 | Cite as

Biochar-Based Magnetic Nanocomposite for Dye Removal from Aqueous Solutions: Response Surface Modeling and Kinetic Study

  • A. A. Akbarnezhad
  • F. SafaEmail author
Sorption and Ion Exchange Processes
  • 3 Downloads

Abstract

In this study, a biochar-based magnetic nanocomposite (BMNC) was synthesized and employed as adsorbent for Eriochrome Black T (EBT) removal from aqueous solutions. The biochar was prepared from oleaster stones and composited with iron oxide nanoparticles produced through chemical co-precipitation technique. The magnetic nanocomposite was characterized by X-ray diffraction analysis, Fourier transform infrared spectrometry, and scanning electron microscopy. The experiments were carried out using the Box-Behnken experimental design (BBD) with four input variables of adsorbent dosage (0.4–2.4 g L–1), solution pH (3–9), contact time (30–50 min), and ionic strength (0.02–0.1 M). An initial EBT concentration of 50 mg L–1 was taken as the fixed input parameter. Regression analysis resulted in a quadratic response surface model whose statistical significance was verified by analysis of variance. The model predicted the optimum conditions for EBT removal from aqueous solution (adsorbent dosage of 2.29 g L–1, pH 3.39, contact time of 48.6 min and ionic strength of 0.1 M) and removal efficiency of 98.11% was achieved. Results of the study showed that the dye adsorption onto the magnetic nanocomposite followed the pseudo-second order kinetic model.

Keywords

adsorption biochar magnetic nanocomposite Box-Behnken design kinetics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mohan, N., Balasubramanian, N., and Basha, C.A., J. Hazard. Mater., 2007, vol. 147, nos. 1–2, pp. 644–651.CrossRefGoogle Scholar
  2. 2.
    Kadirvelu, K., Kavipriya, M., Karthika, C., Radhika, M., Vennilamani, N., and Pattabhi, S., J. Biores. Technol., 2003, vol. 87, no. 1, pp. 129–132.CrossRefGoogle Scholar
  3. 3.
    Dinçer, A.R., Günes, Y., Karakaya, N., and Günes, E., Biores. Technol., 2007, vol. 98, no. 4, pp. 834–839.CrossRefGoogle Scholar
  4. 4.
    Shen, D., Fan, J., Zhou, W., Gao, B., Yue, Q., and Kang, Q., J. Hazard. Mater., 2009, vol. 172, no. 1, pp. 99–107.CrossRefGoogle Scholar
  5. 5.
    Wang, W., Ma, Y., Li, A., Zhou, Q., Zhou, W., and Jin, J., J. Hazard. Mater., 2015, vol. 294, p. 158.CrossRefGoogle Scholar
  6. 6.
    Qadeer, R., Colloids Surf. A. Physicochem. Eng. Asp., 2007, vol. 293, nos. 1–3, pp. 217–223.CrossRefGoogle Scholar
  7. 7.
    Ahmad, M., Rajapaksha, A.U., Lim, J.E., Zhang, M., Bolan, N., Mohan, D., Vithanage, M., Lee, S.S., and Ok, Y.S., Chemosphere, 2014, vol. 99, pp. 19–33.CrossRefGoogle Scholar
  8. 8.
    Tan, X.F., Liu, Y.G., Zeng, G., Wang, X., Hu, X., Gu, Y., and Yang, Z., Chemosphere, 2015, vol. 125, pp. 70–85.CrossRefGoogle Scholar
  9. 9.
    Lehmann, J. and Joseph, S., Biochar for Environmental Management, Science and Technology, Routledge, 2012.CrossRefGoogle Scholar
  10. 10.
    Meyer, S., Glaser, B., and Quicker, P., Environ. Sci. Technol., 2011, vol. 45, no. 22, pp. 9473–9483.CrossRefGoogle Scholar
  11. 11.
    Yao, Y., Gao, B., Chen, L., and Yang, L., Environ. Sci. Technol., 2013, vol. 47, no. 15, pp. 8700–8708.CrossRefGoogle Scholar
  12. 12.
    Reddy, D.H.K. and Lee, S.M., Colloids Surf. A. Physicochem. Eng. Asp., 2014, vol. 454, pp. 96–103.CrossRefGoogle Scholar
  13. 13.
    Chen, B., Chen, Z., and Lv, S., Bioresour. Technol., 2011, vol. 102, no. 2, pp. 716–723.CrossRefGoogle Scholar
  14. 14.
    Zhang, M., Gao, B., Varnoosfaderani, S., Hebard, A., Yao, Y., and Inyang, M., Bioresour. Technol., 2013, vol. 130, pp. 457–462.CrossRefGoogle Scholar
  15. 15.
    Yan, L., Kong, L., Qu, Z., Li, L., and Shen, G., ACS Sustainable Chem. Eng., 2014, vol. 3, no. 1, pp. 125–132.CrossRefGoogle Scholar
  16. 16.
    Devi, P. and Saroha, A.K., Bioresour. Technol., 2014, vol. 169, pp. 525–531.CrossRefGoogle Scholar
  17. 17.
    Wang, S., Gao, B., Zimmerman, A.R., Li, Y., Ma, L., Harris, W.G., and Migliaccio, K.W., Bioresour. Technol., 2015, vol. 175, pp. 391–395.CrossRefGoogle Scholar
  18. 18.
    Shang, J., Pi, J., Zong, M., Wang, Y., Li, W., and Liao, Q., J. Taiwan Inst. Chem. Eng., 2016, vol. 68, pp. 289–294.CrossRefGoogle Scholar
  19. 19.
    Box, G.E.P. and Draper, N.R., Empirical Model-Building and Response Surfaces, Wiley, Minnesota, 1987.Google Scholar
  20. 20.
    Myers, R.H. and Montgomery, D.C., Response Surface Methodology: Process and Product Optimization Using Designed Experiments, New York, John Wiley & Sons, Inc., 1995.Google Scholar
  21. 21.
    Bandari, F., Safa, F., and Shariati, Sh., Arab. J. Sci. Eng., 2015, vol. 40, no. 12, pp. 3363–3372.CrossRefGoogle Scholar
  22. 22.
    Sadaf, S. and Bhatti, H.N., Desalin. Water Treat., 2016, vol. 57, no. 25, pp. 11773–11781.CrossRefGoogle Scholar
  23. 23.
    Ehyaee, M., Safa, F., and Shariati, Sh., Korean J. Chem. Eng., 2017, vol. 34, no. 4, pp. 1051–1061.CrossRefGoogle Scholar
  24. 24.
    Gupta, V.K. and Suhas, J., Environ. Manage., 2009, vol. 90, no. 8, pp. 2313–2342.Google Scholar
  25. 25.
    Tripathi, P., Srivastava, V.C., and Kumar, A., Desalination, 2009, vol. 249, no. 3, pp. 1273–1279.CrossRefGoogle Scholar
  26. 26.
    Basu, P., Biomass Gasification, Pyrolysis and Torrefaction: Practical Design and Theory, 2nd ed., Academic Press, Burlington, 2013.Google Scholar
  27. 27.
    Gong, J.L., Wang, B., Zeng, G.M., Yang, C.P., Niu, C.G., Niu, Q.Y., Zhou, W.J., and Liang, Y., J. Hazard. Mater., 2009, vol. 164, no. 2–3, pp. 1517–1522.CrossRefGoogle Scholar
  28. 28.
    Box, G.E.P. and Behnken, D.W., Technometrics, 1960, vol. 2, no. 4, pp. 455–475.CrossRefGoogle Scholar
  29. 29.
    Germán-Heins, J. and Flury, M., Geoderma, 2000, vol. 97, nos. 1–2, pp. 87–101.CrossRefGoogle Scholar
  30. 30.
    Ma, M., Zhang, Y., Yu, W., Shen, H.Y., Zhang, H.Q., and Gu, N., Colloids Surf. A. Physicochem. Eng. Asp., 2003, vol. 212, nos. 2–3, pp. 219–226.CrossRefGoogle Scholar
  31. 31.
    Stahle, L. and Wold, S., Chemom. Intell. Lab. Syst., 1989, vol. 6, no. 4, pp. 259–272.CrossRefGoogle Scholar
  32. 32.
    Solanki, A.B., Parikh, J.R., and Parikh, R.H., AAPS Pharm. Sci. Tech., 2007, vol. 8, no. 4, pp. 43–49.CrossRefGoogle Scholar
  33. 33.
    Yetilmezsoy, K., Demirel, S., and Vanderbei, R.J., J. Hazard. Mater., 2009, vol. 171, nos. 1–3, pp. 551–562.CrossRefGoogle Scholar
  34. 34.
    Alberghina, G., Bianchini, R., Fichera, M., and Fisichella, S., Dyes Pigments, 2000, vol. 46, no. 3, pp. 129–137.CrossRefGoogle Scholar
  35. 35.
    Lagergren, S., Ksver. Veterskapsakad. Handl., 1898, vol. 24, pp. 1–6.Google Scholar
  36. 36.
    Ho, Y.S. and McKay, G., Process Biochem., 1999, vol. 34, no. 5, pp. 451–465.CrossRefGoogle Scholar
  37. 37.
    Weber, W.J. and Morris, J.C., J. Sanit. Engg. Div. ASCE, 1963, vol. 89, no. 2, pp. 31–60.Google Scholar
  38. 38.
    Kannan, K. and Sundaram, M.M., Sundaram, Dyes Pigments, 2001, vol. 51, no. 1, pp. 25–40.CrossRefGoogle Scholar
  39. 39.
    Allen, S.J., Mckay, G., and Khader, K.Y.H., Environ. Pollut., 1989, vol. 56, no. 1, pp. 39–50.CrossRefGoogle Scholar
  40. 40.
    Poots, V.J.P., McKay, G., and Healy, J.J., J. Water Pollut. Control Fed., 1978, vol. 50, no. 5, pp. 926–935.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Department of ChemistryRasht Branch, Islamic Azad UniversityRashtIran

Personalised recommendations