Advertisement

Russian Journal of Applied Chemistry

, Volume 91, Issue 11, pp 1835–1840 | Cite as

Oxidative Functionalization of Asphaltenes from Heavy Crude Oil

  • V. Ya. Ignatenko
  • Yu. V. Kostina
  • S. V. Antonov
  • S. O. IlyinEmail author
Technological Production of New Materials
  • 2 Downloads

Abstract

Sulfuric and nitric acids were used to functionalize asphaltenes isolated from heavy crude oil by treatment with heptane or hexamethyldisiloxane. The elemental composition of the asphaltenes was analyzed and their functional groups before and after the modification were identified. It was shown that the content of heteroatoms in the modified asphaltenes increases. Carbonyl, carboxyl, sulfonic, and nitro groups appear in the asphaltenes with the content dependent on the type of a modifier used and on the prehistory of how they were obtained.

Keywords

asphaltenes functionalization elemental analysis IR spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ilyin, S.O. and Strelets, L.A., Energy Fuels, 2018, vol. 32, no. 1, pp. 268–278.CrossRefGoogle Scholar
  2. 2.
    Ilyin, S.O., Pakhmanova, O.A., Kostyuk, A.V., and Antonov, S.V., Petrol. Chem., 2017, vol. 57, no. 12, pp. 1141–1143.CrossRefGoogle Scholar
  3. 3.
    Ilyin, S., Arinina, M., Polyakova, M., Bondarenko, G., Konstantinov, I., Kulichikhin, V., and Malkin, A., J. Petrol. Sci. Eng., 2016, vol. 147, pp. 211–217.CrossRefGoogle Scholar
  4. 4.
    Mullins, O.C., Energy Fuels, 2010, vol. 24, no. 4, pp. 2179–2207.CrossRefGoogle Scholar
  5. 5.
    Mullins, O.C., Sabbah, H., Eyssautier, J., Pomerantz, A.E., Barré, L., Andrews, A.B., Ruiz-Morales, Y., Mostowfi, F., McFarlene, R., Goual, L., Lepkowicz, R., Cooper, T., Orbulescu, J., Leblanc, R.M., Edwards, J., and Zare, N., Energy Fuels. 2012, vol. 26, no. 7, pp. 3986–4003.CrossRefGoogle Scholar
  6. 6.
    Kuilla, T., Bhadra, S., Yao, D., Kim, N.H., Bose, S., and Lee, J.H., Prog. Polym. Sci., 2010, vol. 35, no. 11, pp. 1350–1375.CrossRefGoogle Scholar
  7. 7.
    Kim, H., Abdala, A.A., and Macosko, C.W., Macromolecules, 2010, vol. 43, no. 16, pp. 6515–6530.CrossRefGoogle Scholar
  8. 8.
    Sengupta, R., Bhattacharya, M., Bandyopadhyay, S., and Bhowmick, A.K., Prog. Polym. Sci., 2011, vol. 36, no. 5, pp. 638–670.CrossRefGoogle Scholar
  9. 9.
    Ilyin, S.O., Brantseva, T.V., Gorbunova, I.Y., Antonov, S.V., Korolev, Y.M., and Kerber, M.L., Int. J. Adhes. Adhes., 2015, vol. 61, pp. 127–136.CrossRefGoogle Scholar
  10. 10.
    Brantseva, T., Antonov, S., Kostyuk, A., Ignatenko, V., Smirnova, N., Korolev, Y., Tereshin, A., and Ilyin, S., Eur. Polym. J., 2016, vol. 76, pp. 228–244.CrossRefGoogle Scholar
  11. 11.
    Brantseva, T.V., Antonov, S.V., and Gorbunova, I.Y., Int. J. Adhes. Adhes., 2018, vol. 82, pp. 263–281.CrossRefGoogle Scholar
  12. 12.
    Karpukhina, E.A., Ilyin, S.O., Makarova, V.V., Meshkov, I.B., and Kulichikhin, V.G., Polym. Sci., Ser. A, 2014, vol. 56, no. 6, pp. 798–811.CrossRefGoogle Scholar
  13. 13.
    Ilyin, S.O., Polyakova, M.Y., Makarova, V.V., Meshkov, I.B., and Kulichikhin, V.G., Polym. Sci., Ser. A, 2016, vol. 58, no. 6, pp. 987–995.CrossRefGoogle Scholar
  14. 14.
    Georgakilas, V., Kordatos, K., Prato, M., Guldi, D.M., Holzinger, M., and Hirsch, A., J. Am. Chem. Soc., 2002, vol. 124, no. 5, pp. 760–761.CrossRefGoogle Scholar
  15. 15.
    Ma, P.C., Siddiqui, N.A., Marom, G., and Kim, J.K., Composites, Part A, 2010, vol. 41, no. 10, pp. 1345–1367.CrossRefGoogle Scholar
  16. 16.
    Nakamura, E. and Isobe, H., Acc. Chem. Res., 2003, vol. 36, no. 11, pp. 807–815.CrossRefGoogle Scholar
  17. 17.
    Georgakilas, V., Otyepka, M., Bourlinos, A. B., Chandra, V., Kim, N., Kemp, K.C., Hobza, P., Zboril, R., and Kim, K.S., Chem. Rev., 2012, vol. 112, no. 11, pp. 6156–6214.CrossRefGoogle Scholar
  18. 18.
    Chen, D., Feng, H., and Li, J., Chem. Rev., 2012, vol. 112, no. 11, pp. 6027–6053.CrossRefGoogle Scholar
  19. 19.
    Ma, P.C., Siddiqui, N.A., Marom, G., Kim, J.K., Composites, Part A, 2010, vol. 41, no. 10, pp. 1345–1367.CrossRefGoogle Scholar
  20. 20.
    Tasis, D., Tagmatarchis, N., Bianco, A., and Prato, M., Chem. Rev., 2006, vol. 106, no. 3, pp. 1105–1136.CrossRefGoogle Scholar
  21. 21.
    Datsyuk, V., Kalyva, M., Papagelis, K., Parthenios, J., Tasis, D., Siokou, A., Kallitsis, I., and Galiotis, C., Carbon, 2008, vol. 46, no. 6, pp. 833–840.CrossRefGoogle Scholar
  22. 22.
    Ilyin, S.O., Arinina, M.P., Polyakova, M.Y., Kulichikhin, V.G., and Malkin, A.Y., Fuel, 2016, vol. 186, pp. 157–167.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. Ya. Ignatenko
    • 1
  • Yu. V. Kostina
    • 1
  • S. V. Antonov
    • 1
  • S. O. Ilyin
    • 1
    Email author
  1. 1.Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia

Personalised recommendations