Advertisement

Russian Journal of Applied Chemistry

, Volume 91, Issue 11, pp 1773–1778 | Cite as

Effect of Some Technological Parameters on the Conversion of Dimethyl Ether to Light Olefins in a Slurry Reactor

  • N. V. Kolesnichenko
  • N. N. Ezhova
  • A. N. Stashenko
  • A. E. Kuz’min
  • O. V. YashinaEmail author
  • K. B. Golubev
Physicochemical Studies of Systems and Processes
  • 5 Downloads

Abstract

Effect of mode parameters, such as the feed gas flow rate, its content of dimethyl ether, and content of a catalyst in the suspension, on the main parameters of the dimethyl ether conversion into light C2–C4 olefins in a three-phase system (slurry reactor) in the presence of a catalytic suspension based on a nanosize zeolite Mg–MFI dispersed in silicone oil was examined. The values of the parameters, at which the conversion of dimethyl ether occurs in the steady state mode under favorable hydrodynamic conditions at a relative chemical stability of the dispersion medium and its minimum mechanical entrainment from the reactor, were found. Irrespective of the dimethyl ether concentration in the operating gas, the reaction was shown to occur with conversion of up to ~80% at selectivity of ~50%, and ethylene is the main reaction product (up to 30 wt %).

Keywords

catalysis on the dispersed phase catalysis on zeolites zeolite nanoparticles conversion of dimethyl ether light olefins slurry reactor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Krylov, O.V., Geterogennyi kataliz (Heterogeneous Catalysis), Moscow: Akademkniga, 2004.Google Scholar
  2. 2.
    Martinez-Espin, J.S., Mortén, M., Janssens, T.V.W., Svelle, S., Beato, P., and Olsbye, U., Catal. Sci. Technol., 2017, vol. 7, no. 13, pp. 2700–2716.Google Scholar
  3. 3.
    Wei, Z., Chen, Y., Li, J., and Guo, W., J. Phys. Chem. C, 2016, vol. 120, no. 11, pp. 6075–6087.Google Scholar
  4. 4.
    Khanmohammadi, M., Amani, S., Garmarudi, A.B., and Niaei, A., Chin. J. Catal., 2016, vol. 37, no. 3, pp. 325–339.Google Scholar
  5. 5.
    Olsbye, U., Svelle, S., Lillerud, K.P., Wei, Z.H., Chen, Y.Y., Li, J.F., Wang, J.G., and Fan, W.B., Chem. Soc. Rev., 2015, vol. 44, pp. 7155–7176.Google Scholar
  6. 6.
    Plessow, P.N. and Studt, F., Catal. Lett., 2018, vol. 148, no. 4, pp. 1246–1253.Google Scholar
  7. 7.
    Taniguchi, T., Yonetal, K., Nakaoka, S., Nakasaka, Y., Yoko, T., Tago, T., and Masuda, T., Catal. Lett., 2016, vol. 146, no. 2, pp. 442–451.Google Scholar
  8. 8.
    Miyake, K., Hirota, Y., Ono, K., Uchida, Y., Miyamoto, M., and Nishiyama, N., New J. Chem., 2017, vol. 41, no. 6, pp. 2235–2240.Google Scholar
  9. 9.
    Zhang, H., Ning, Z., Liu, H., Shang, J., Han, Sh., Jiang, D., Jiang, Y., and Guo, Y., RSC Adv., 2017, vol. 7, pp. 16602–16607.Google Scholar
  10. 10.
    Tian, P., Wei, Y., Ye, M., and Liu, Z., ACS Catal., 2015, vol. 5, no. 3, pp. 1922–1938.Google Scholar
  11. 11.
    Koempel, H. and Liebner, W., Stud. Surf. Sci. Catal., 2007, vol. 167, pp. 261–267.Google Scholar
  12. 12.
    Li, Y., Zhang, M., Wang, D., Wie, F., and Wang, Y., J. Catal., 2014, vol. 311, pp. 281–287.Google Scholar
  13. 13.
    Kolesnichenko, N.V., Goryainova, T.I., Biryukova, E.N., Yashina, O.V., and Khadzhiev, S.N., Nefte khimiya, 2011, vol. 51, no. 1, pp. 56–61Google Scholar
  14. 13a.
    Kolesnichenko, N.V., Goryainova, T.I., Biryukova, E.N., Yashina, O.V., and Khadzhiev, S.N., Petrol. Chem., 2011, vol. 51, no. 1, pp. 55–60).Google Scholar
  15. 14.
    Goryainova, T.I., Biryukova, E.N., Kolesnichenko, N.V., and Khadzhiev, S.N., Neftekhimiya, 2011, vol. 51, no. 3, pp. 181–185Google Scholar
  16. 15a.
    Goryainova, T.I., Biryukova, E.N., Kolesnichenko, N.V., and Khadzhiev, S.N., Petrol. Chem., 2011, vol. 51, no. 3, pp. 169–173.Google Scholar
  17. 15.
    Biryukova, E.N., Goryainova, T.I., Kulumbegov, R.V., Kolesnichenko, N.V., and Khadzhiev, S.N., Neftekhimiya, 2011, vol. 51, no. 1, pp. 50–55Google Scholar
  18. 17a.
    Biryukova, E.N., Goryainova, T.I., Kulumbegov, R.V., Kolesnichenko, N.V., and Khadzhiev, S.N., Petrol. Chem., 2011, vol. 51, no. 1, pp. 49–54.Google Scholar
  19. 16.
    Al-Dughaither, A.S. and de Lasa, H., Fuel, 2014, vol. 138, pp. 52–64.Google Scholar
  20. 17.
    Perez-Uriarte, P., Ateka, A., Gamero, M., Aguayo, A.T., and Bilbao, J., Ind. Eng. Chem. Res., 2016, vol. 55, no. 23, pp. 6569–6578.Google Scholar
  21. 18.
    Nasser, G., Kurniawan, T., Miyake, K., Galadima, A., Hirota, Y., Nishiyama, N., and Muraza, O., J. Natur. Gas Sci. Eng., 2016, vol. 28, no. 1, pp. 566–571.Google Scholar
  22. 19.
    RF Patent 2 220 939 (publ. 2004).Google Scholar
  23. 20.
    Arvidsson, M., Haro, P., Morandin, M., and Harvey, S., Chem. Eng. Res. Des., 2016, vol. 115, pp. 182–194.Google Scholar
  24. 21.
    Buisson, B., Donegan, S., and Wray, D., Chem. Today, 2009, vol. 27, no. 6, pp. 12–14.Google Scholar
  25. 22.
    Lira, A. and Tailleur, R.G., Fuel, 2012, vol. 97, no. 1, pp. 49–60.Google Scholar
  26. 23.
    Pintar, A., Bercic, G., Besson, M., and Gallezot, P., Appl. Catal., B, 2007, vol. 47, no. 3, pp. 143–152.Google Scholar
  27. 24.
    Krupka, J., Dluhoš, L., and Mrózek, L., Chem. Eng. Tech., 2017, vol. 40, no. 5, pp. 870–877.Google Scholar
  28. 25.
    Chen, K., Liu, B., and Soares, J.B.P., Macromol. React. Eng., 2016, vol. 10, pp. 463–470.Google Scholar
  29. 26.
    Deng, Z., Yang, Y., and Lu, X., Catal. Sci. Tech., 2016, vol. 6, pp. 2605–2611.Google Scholar
  30. 27.
    Stamatiou, I.K. and Muller, F.L., Am. Inst. Chem. Eng. J., 2017, vol. 63, no. 1, pp. 273–282.Google Scholar
  31. 28.
    RF Patent 2 547 838 (publ. 2015).Google Scholar
  32. 29.
    Kolesnichenko, N.V., Konnov, S.V., Pavlov, V.S., Yashina, O.V., Ezhova, N.N., and Khadzhiev, S.N., Nanogeterog. Katal., 2017, vol. 2, no. 1, pp. 29–37Google Scholar
  33. 32a.
    Kolesnichenko, N.V., Konnov, S.V., Pavlov, V.S., Yashina, O.V., Ezhova, N.N., and Khadzhiev, S.N., Petrol. Chem., 2017, vol. 57, no. 7, pp. 576–583.Google Scholar
  34. 30.
    Kolesnichenko, N.V., Ezhova, N.N., and Yashina, O.V., Neftekhimiya, 2016, vol. 56, no. 6, pp. 607–611Google Scholar
  35. 34a.
    Kolesnichenko, N.V., Ezhova, N.N., and Yashina, O.V., Petrol. Chem., 2016, vol. 56, no. 9, pp. 829–833.Google Scholar
  36. 31.
    Kolesnichenko, N.V., Yashina, O.V., Ezhova, N.N., Bondarenko, G.N., and Khadzhiev, S.N., Zh. Fiz. Khim., 2018, vol. 92, no. 1, pp. 115–121Google Scholar
  37. 36a.
    Kolesnichenko, N.V., Yashina, O.V., Ezhova, N.N., Bondarenko, G.N., and Khadzhiev, S.N., Russ. J. Phys. Chem. A, 2018, vol. 92, no. 1, pp. 118–123.Google Scholar
  38. 32.
    Tseng, H.S., Lloyd, D.R., and Ward, T.C., J. Appl. Polym. Sci., 1985, vol. 30, no. 1, pp. 307–315.Google Scholar
  39. 33.
    Khadzhiev, S.N., Kolesnichenko, N.V., and Ezhova, N.N., Neftekhimiya, 2016, vol. 56, no. 2, pp. 95–114Google Scholar
  40. 39a.
    Khadzhiev, S.N., Kolesnichenko, N.V., and Ezhova, N.N., Petrol. Chem., 2016, vol. 56, no. 2, pp. 77–95.Google Scholar
  41. 34.
    Braginskii, L.N., Begachev, V.I., and Barabash, V.M., Peremeshivanie v zhidkikh sredakh (Agitation in Liquid Media), Leningrad: Khimiya, 1984.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • N. V. Kolesnichenko
    • 1
  • N. N. Ezhova
    • 1
  • A. N. Stashenko
    • 1
  • A. E. Kuz’min
    • 1
  • O. V. Yashina
    • 1
    Email author
  • K. B. Golubev
    • 1
  1. 1.Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia

Personalised recommendations