Advertisement

Russian Journal of Applied Chemistry

, Volume 91, Issue 11, pp 1767–1772 | Cite as

Effect of Hydrogen Addition on Oxidative Cracking of Ethane

  • A. V. NikitinEmail author
  • A. V. Ozerskii
  • A. A. Afaunov
  • I. V. Sedov
  • V. I. Savchenko
  • V. S. Arutyunov
Physicochemical Studies of Systems and Processes
  • 2 Downloads

Abstract

Effect of hydrogen addition at [C2H6]/[H2] ratios of 10–0.05 on the oxy-cracking of ethane was experimentally studied. It was shown that small additions of hydrogen have nearly no effect on the process rate. With the concentration of added hydrogen increasing at temperatures of up to ~650°C, the contributions from the reactions of oxidation of both hydrogen itself and starting ethane becomes more pronounced, with water, carbon oxides, methane, and ethylene being the main reaction products. With increasing temperature, the influence exerted by small additions of hydrogen on the conversion of ethane and oxygen decreases. Performing the oxidative cracking in hydrogen at temperatures higher than 650°C demonstrated that hydrogen makes the conversion of ethane smaller and the expenditure of oxygen for oxidation of hydrogen grows.

Keywords

refinery gases oxy-cracking ethylene carbon monoxide hydroformylation carbonylation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Korzhubaev, A.G., Eder, L.V., and Nemov, V.Yu., Problem. Ekon. Upravl. Neftegaz. Kompleksom, 2011, no. 11, pp. 31–38.Google Scholar
  2. 2.
    Bondareva, V.M., Lazareva, E.V., and Sobolev, V.I., Russ. J. Appl. Chem., 2018, vol. 91, no. 6, pp. 977–980.CrossRefGoogle Scholar
  3. 3.
    Wang, D. and Feng, X., Int. J. Hydrogen Energy, 2013, vol. 38, pp. 12968–12976.CrossRefGoogle Scholar
  4. 4.
    Wood, D.A., Nwaoha, C., and Towler, B.F., J. Nat. Gas Sci. Eng., 2012, vol. 9, p. 196.CrossRefGoogle Scholar
  5. 5.
    Lebedev, N.N., Khimiya i tekhnologiya osnovnogo organicheskogo i neftekhimicheskogo sinteza (Chemistry and Technology of Basic Organic and Petrochemical Synthesis), Moscow: Khimiya, 1971.Google Scholar
  6. 6.
    Arutyunov, V.S., Savchenko, V.I., Sedov, I.V., Nikitin, A.V., Magomedov, R.N., and Proshina, A.Yu., Russ. Chem. Rev., 2017, vol. 86, no. 1, pp. 47–74.CrossRefGoogle Scholar
  7. 7.
    Magomedov, R.N., Nikitin, A.V., Savchenko, V.I., and Arutyunov, V.S., Kinet. Katal., 2014, vol. 55, no. 5, pp. 584–593CrossRefGoogle Scholar
  8. 7a.
    Magomedov, R.N., Nikitin, A.V., Savchenko, V.I., and Arutyunov, V.S., Kinet. Catal., 2014, vol. 55, no. 5, pp. 556–565.CrossRefGoogle Scholar
  9. 8.
    Magomedov, R.N., Proshina, A.Yu., Peshnev, B.V., and Arutyunov, V.S., Kinet. Katal., 2013, vol. 54, no. 4, pp. 401–412Google Scholar
  10. 9a.
    Magomedov, R.N., Proshina, A.Yu., Peshnev, B.V., and Arutyunov, V.S., Kinet. Catal., 2013, vol. 54, no. 4, pp. 413–419).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. V. Nikitin
    • 1
    • 2
    Email author
  • A. V. Ozerskii
    • 1
    • 2
  • A. A. Afaunov
    • 2
  • I. V. Sedov
    • 1
  • V. I. Savchenko
    • 1
  • V. S. Arutyunov
    • 1
    • 2
  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  2. 2.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations