Advertisement

Russian Journal of Applied Chemistry

, Volume 91, Issue 11, pp 1758–1766 | Cite as

Effect of Finely Dispersed Chromite on the Physicochemical and Mechanical Properties of Modified Epoxy Composites

  • A. S. MostovoyEmail author
  • A. S. Nurtazina
  • I. N. Burmistrov
  • Yu. A. Kadykova
Macromolecular Compounds and Polymeric Materials
  • 5 Downloads

Abstract

Fylolflex oligo(resorsinol phenyl phosphate) with terminal phenyl groups is an effective plasticizer for an epoxy polymer, allowing the development of compounds with enhanced levels of physicomechanical properties, heat resistance, softening point, an flame resistance. Introduction of chromite, a cheap and active filler, into the epoxy polymer in amounts of 0.1 and 100 wt parts enhances the physicochemical and mechanical properties of the composite. Namely, the Vicat softening point increases from 132 to 140–250°С, the degradation onset temperature increases, and the yield of carbonized structures increases from 54 to 68–86 wt %, which leads to a decrease in the release of volatile pyrolysis products into the gas phase and in the combustibility of the epoxy composite.

Keywords

epoxy resin modification plasticizer filler chromite physicochemical and mechanical properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kumar, R., Kumar, K., Sahoo, P., and Bhowmik, S., Procedia Mater. Sci., 2014, vol. 6, pp. 551–556.CrossRefGoogle Scholar
  2. 2.
    Radoman, T.S., Dzunuzovic, J.V., Jeremic, K.B., Grgur, B.N., Milicevic, D.S., Popovic, I.G., and Dzunuzovic, E.S., Mater. Des., 2014, vol. 62, pp. 158–167.CrossRefGoogle Scholar
  3. 3.
    Qian, L., Qiu, Y., Sun, N., Xu, M., Xu, G., Xin, F., and Chen, Y., Polym. Degrad. Stab., 2014, vol. 107, pp. 98–105.CrossRefGoogle Scholar
  4. 4.
    Ulegin, S.V., Kadykova, Yu.A., Artemenko, S.E., and Demidova, S.A., Int. Polym. Sci. Technol., 2014, vol. 41, no. 5, pp. 57–60.CrossRefGoogle Scholar
  5. 5.
    Kadykova, Yu.A., Ulegin, S.V., Farkhutdinova, E.G., and Sotnik, V.A., Vestn. Sarat. Gos. Tekh. Univ., 2012, no. 4 (68), pp. 97–99.Google Scholar
  6. 6.
    Fedoseev, M.S., Derzhavinskaya, L.F., and Tsvetkov, R.V., Perspekt. Mater., 2014, no. 4, pp. 30–36.Google Scholar
  7. 7.
    Mostovoi, A.S., Plakunova, E.V., and Panova, L.G., Perspekt. Mater., 2014, no. 1, pp. 37–43.Google Scholar
  8. 8.
    Osipov, P.V., Osipchik, V.S., Smotrova, S.A., and Savel’ev, D.N., Int. Polym. Sci. Technol., 2012, vol. 39, no. 8, pp. T29–T31.CrossRefGoogle Scholar
  9. 9.
    Maisuradze, N.V. and Abdrakhmanova, L.A., Vestn. Tekhnol. Univ., 2015, vol. 18, no. 18, pp. 179–181.Google Scholar
  10. 10.
    Sadygov, Sh.F., Ishchenko, N.Ya., and Agaeva, S.A., Plast. Massy, 2008, no. 3, pp. 24–26.Google Scholar
  11. 11.
    Stukhlyak, P.D., Kartashov, V.V., Sorivka, I.T., and Skorokhod, A.Z., Perspekt. Mater., 2013, no. 6, pp. 63–68.Google Scholar
  12. 12.
    Starokadomskii, D.L., Tkachenko, A.A., and Garashchenko, I.I., Plast. Massy, 2015, nos. 5–6, pp. 50–55.Google Scholar
  13. 13.
    Plakunova, E.V. and Panova, L.G., Khim. Prom–st., 2013, vol. 90, no. 6, pp. 295–301.Google Scholar
  14. 14.
    Firsov, V.A., Paramonov, Yu.M., Artemov, V.N., and Lipskaya, V.A., Vysokomol. Soedin., Ser. B, 1982, vol. 24, no. 11, pp. 822–824.Google Scholar
  15. 15.
    Khozin, V.G., Usilenie epoksidnykh polimerov (Reinforcement of Epoxy Polymers), Kazan: Dom Pechati, 2004.Google Scholar
  16. 16.
    Burmistrov, I.N., Shatrova, N.V., Mostovoy, A.S., Mazov, I.N., Kuznetsov, D.V., Panova, L.G., Gorokhovsky, A.V., and Yudin, A.G., Polym. Eng. Sci., 2014, vol. 54, no. 12, pp. 2866–2871.CrossRefGoogle Scholar
  17. 17.
    Shirshova, E.S., Tatarintseva, E.A., Plakunova, E.V., and Panova, L.G., Plast. Massy, 2006, no. 12, pp. 34–36.Google Scholar
  18. 18.
    Eremeeva, N.M., Chadina, V.V., Sveshnikova, E.S., and Panova, L.G., Fundam. Issled., 2015, no. 5, pp. 68–72.Google Scholar
  19. 19.
    Mostovoi, A.S., Vopr. Materialoved., 2015, no. 4 (84), pp. 117–122.Google Scholar
  20. 20.
    Mostovoi, A.S., Plakunova, E.V., and Panova, L.G., Dizain. Mater. Tekhnol., 2012, no. 5 (25), pp. 135–137.Google Scholar
  21. 21.
    Barshtein, R.S., Kirilovich, R.S., and Nosovskii, Yu.E., Plastifikatory dlya polimerov (Plasticizers for Polymers), Moscow: Khimiya, 1982.Google Scholar
  22. 22.
    Mostovoi, A.S., Perspekt. Mater., 2016, no. 4, pp. 60–66.Google Scholar
  23. 23.
    Mostovoi, A.S., Panova, L.G., and Kurbatova, E.A., Vopr. Materialoved., 2016, no. 2 (86), pp. 87–95.Google Scholar
  24. 24.
    Lazarev, A.V., Kaznacheev, S.V., Erofeev, V.T., Khudyakov, V.A., and Kretova, V.M., Izv. Yugo-Zap. Gos. Univ., 2014, no. 1, pp. 94–98.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. S. Mostovoy
    • 1
    Email author
  • A. S. Nurtazina
    • 1
  • I. N. Burmistrov
    • 1
  • Yu. A. Kadykova
    • 1
  1. 1.Engels Institute of TechnologyBranch of the Saratov State Technical UniversityEngels, Saratov oblastRussia

Personalised recommendations