Advertisement

Russian Journal of Applied Chemistry

, Volume 91, Issue 10, pp 1688–1693 | Cite as

Development of Ni–Mo Sorption-Catalytic Materials for Removing Arsenic Compounds from Middle Distillates

  • E. R. NaranovEmail author
  • V. O. Samoilov
  • O. V. Golubev
  • K. L. Zanaveskin
  • A. L. Maksimov
  • E. A. Karakhanov
Sorption and Ion Exchange Processes
  • 6 Downloads

Abstract

Possibility of using mesoporous materials for obtaining Ni–Mo sorption-catalytic materials for purification of medium-distillate fractions to remove arsenic-containing compounds was examined. It was shown that, in the course of hydropurification, the acidity of the mesoporous material does not directly affect the extent to which the amount of arsenic in hydrocarbons is diminished. It was found that mesoporous supports of the SBA-15, TUD, and MCF types reduce the content of arsenic to less than 0.5 ppm at 360°C and 50 atm of H2.

Keywords

hydrogenation hydropurification protective layer sorption-catalytic materials arsenic SBA-15 TUD MCF 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    US Patent 4 188 280 (publ. 1980).Google Scholar
  2. 2.
    US Patent 4 839 029 (publ. 1989).Google Scholar
  3. 3.
    US Patent 4 462 896 (publ. 1989).Google Scholar
  4. 4.
    Robinson, P.R. and Hsu, C.S., Practical Advances in Petroleum Processing, New York: Springer New York, 2006, pp. 1–78.CrossRefGoogle Scholar
  5. 5.
    Stanislaus, A. and Cooper, B., Catal. Rev., 1994, vol. 36, pp. 75–123.CrossRefGoogle Scholar
  6. 6.
    Boesen, R.R., Investigation and Modelling of Diesel Hydrotreating Reactions: PhD Thesis, 2010.Google Scholar
  7. 7.
    Corma, A., Chem. Rev., 1997, vol. 97, no. 6, pp. 2373–2419.CrossRefGoogle Scholar
  8. 8.
    Vinogradova, N.Ya., Gulyaeva, L.A., and Khavkin, V.A., Tekhnol. Nefti Gaza, 2008, vol. 54, no. 1, pp. 4–10.Google Scholar
  9. 9.
    Tomina, N.N., Pimerzin, A.A., and Moiseev, I.K., Ross. Khim. Zh., (Zh. Ross. Khim. O–va im. D. I. Mendeleeva). 2008, vol. 52, no. 4, pp. 41–52.Google Scholar
  10. 10.
    Naranov, E.R., Badeeva, A.S., Sadovnikov, A.A., Kardashev, S.V., Maksimov, A.L., Lysenkov, S.V., Vinokurov, V.A., and Karakhanov, E.A., Petrol. Chem., 2016, vol. 56, no. 7, pp. 599–606.CrossRefGoogle Scholar
  11. 11.
    Naranov, E.R., Sadovnikov, A.A., Maximov, A.L., and Karakhanov, E.A., Micropor. Mesopor. Mater., 2018, vol. 263, pp. 150–157.CrossRefGoogle Scholar
  12. 12.
    Meynen, V., Cool, P., and Vansant, E.F., Micropor. Mesopor. Mater., 2009, vol. 125, no. 3, pp. 170–223.CrossRefGoogle Scholar
  13. 13.
    Rahmat, N., Abdullah, A.Z., and Mohamed, A.R., Am. J. Appl. Sci., 2010, vol. 7 (12), pp. 1579–1586.CrossRefGoogle Scholar
  14. 14.
    Shirokopoyas, S.I., Baranova, S.V., Maksimov, A.L., Kardashev, S.V., Naranov, E.R., Lysensko, S.V., Karakhanov, E.A., Kulikov, A.B., and Vinokurov, V.A., Petroleum Chem., 2014, vol. 54, no. 2, pp. 94–99.CrossRefGoogle Scholar
  15. 15.
    Zhao, D., Feng, J., Huo, Q., Melosh, N., Fredrickson, G.H., Chmelka, B.F., and Stucky, G.D., Am. Assoc. Adv. Sci., 1998, vol. 279, no. 5350, pp. 548–552.Google Scholar
  16. 16.
    Jansen, J.C., Shan, Z., Marchese, L., Zhou, W., Puild, N., and Maschmeyer, Th., Chem. Commun., 2001, no. 8, pp. 713–714.CrossRefGoogle Scholar
  17. 17.
    Schmidt-Winkel, P, Lukens, W.W., Yang, P., Margolese, D.I., Lettow, J.S., Ying, J.Y., and Stucky, G.D., Chem. Mater., 2000, vol. 12, no. 3, pp. 686–696.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • E. R. Naranov
    • 1
    • 2
    Email author
  • V. O. Samoilov
    • 1
  • O. V. Golubev
    • 2
  • K. L. Zanaveskin
    • 1
  • A. L. Maksimov
    • 1
    • 2
  • E. A. Karakhanov
    • 2
  1. 1.Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia
  2. 2.Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations