Russian Journal of Applied Chemistry

, Volume 91, Issue 10, pp 1635–1641 | Cite as

Effect of Irradiation with a Continuous Beam of Accelerated Electrons on the Texture and Nanostructure of Carbon Black: a Study by Adsorption and High-Resolution Transmission Electron Microscopy

  • V. A. DrozdovEmail author
  • T. I. Gulyaeva
  • M. V. Trenikhin
Macromolecular Compounds and Polymeric Materials


Textural, structural, and morphological changes occurring in globular carbon black of various particle size fractions under continuous irradiation with a continuous beam of 2.5-MeV accelerated electrons were studied by the methods of adsorption and high-resolution transmission electron microscopy. The electron irradiation leads to pronounced transformation of the solid globular framework of carbon black mainly into graphite-like nanocapsules of 10–50 nm size with the spacing between the graphene layers of the order of 0.355 nm. The observed effect leads to a decrease in the porosity (by a factor of approximately 1.65) and in the specific surface area (by a factor of 3–4) of the irradiated samples. This may be due to the transformation of the turbostratic (practically amorphous) form of carbon black into the nanostructured state with denser packing of carbon particles. The physicochemical properties of such carbon should be primarily determined by the structure of the solid framework.


carbon black accelerated electrons texture and nanostructure adsorption method high-resolution transmission electron microscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Surovikin, V.F., Ross. Khim. Zh. (Zh. Ross. Khim. O–va. im. D.I. Mendeleeva), 2007, vol. LI, no. 4, pp. 92–97.Google Scholar
  2. 2.
    Razd’yakonova, G.I. and Likholobov, V.A., Int. Polym. Sci. Technol., 2014, vol. 40, no. 12, pp. T1–T4.Google Scholar
  3. 3.
    Fenelonov, V.B., Vvedenie v fizicheskuyu khimiyu formirovaniya supramolekulyarnoi struktury adsorbentov i katalizatorov (Introduction to Physical Chemistry of the Formation of the Supramolecular Structure of Adsorbents and Catalysts), Novosibirsk: Sib. Otdel. Ross. Akad. Nauk, 2002.Google Scholar
  4. 4.
    Donnet, J.-B., Bansal, R.C., and Wang, M.-J., Carbon Black: Science and Technology, New York: Dekker, 1993.Google Scholar
  5. 5.
    Carbon Materials for Advanced Technologies, Burchell, T.D., Ed., Amsterdam: Pergamon, 1999.Google Scholar
  6. 6.
    Zhu, W., Miser, D.E., Chan, W.G., and Hajaligol, M.R., Carbon, 2004, vol. 42, pp. 1841–1845.CrossRefGoogle Scholar
  7. 7.
    Long, Ch.M., Nascarella, M.A., and Valberg, P.A., Environ. Pollut., 2013, vol. 181, pp. 271–286.CrossRefGoogle Scholar
  8. 8.
    Lauer, J.L., Handbook of Raman Spectroscopy, Lewis, I.R. and Edwards, H.G.M., Eds., New York: Dekker, 2001, ch. 22, pp. 863–917.Google Scholar
  9. 9.
    Harris, P.J.F., Carbon Nanotubes and Related Structures. New Materials for the Twenty-First Century, Cambridge Univ. Press, 1999.CrossRefGoogle Scholar
  10. 10.
    Bandosz, T.J., Carbon Materials for Catalysis, Serp, P. and Figueiredo, J.L., Eds., New Jersey: Wiley, 2009, ch. 2, pp. 45–92.Google Scholar
  11. 11.
    Bostan, M., Keast, V.J., Watanabe, M., McCulloch, D.G., Shakerzadeh, M., Teo, E.H.T., and Tay, B.K., Carbon, 2009, vol. 47, pp. 94–101.CrossRefGoogle Scholar
  12. 12.
    Fenelonov, V.B., Poristyi uglerod (Porous Carbon), Novosibirsk: Nauka, 1995.Google Scholar
  13. 13.
    Karnaukhov, A.P., Adsorbtsiya. Tekstura dispersnykh i poristykh materialov (Adsorption. Texture of Disperse and Porous Materials), Novosibirsk: Nauka, 1999.Google Scholar
  14. 14.
    Ugarte, D., Nature, 1992, vol. 359, pp. 707–709.CrossRefGoogle Scholar
  15. 15.
    Seto, T., Inoue, A., Higashi, H., Otani, Y., Kohno, M., and Hirasawa, M., Carbon, 2014, vol. 70, pp. 224–232.CrossRefGoogle Scholar
  16. 16.
    Carbon Nanotechnology: Recent Developments in Chemistry, Physics, Materials Science and Device Applications, Dai, L., Ed., Dayton: Elsevier, 2006.Google Scholar
  17. 17.
    McDonough, J.K., Frolov, A.I., Presser, V., Niu, J., Miller, C.H., Ubieto, T., Fedorov, M.V., and Gogotsi, Yu., Carbon, 2012, vol. 50, no. 9, pp. 3298–3309.CrossRefGoogle Scholar
  18. 18.
    Hu, S., Dong, Y., Yang, J., Liu, J., and Cao, S., J. Mater. Chem., 2012, vol. 22, pp. 1957–1961.CrossRefGoogle Scholar
  19. 19.
    Kryazhev, Yu.G., Koval’, N.N., Likholobov, V.A., Teresov, A.D., Drozdov, V.A., and Trenikhin, M.V., Tech. Phys. Lett., 2012, vol. 38, no. 4, pp. 301–303.CrossRefGoogle Scholar
  20. 20.
    Trenikhin, M.V., Protasova, O.V., Seropyan, G.M., and Drozdov, V.A., Chem. Sustain. Develop., 2013, vol. 1, pp. 101–106.Google Scholar
  21. 21.
    Yamada, K. and Tobisawa, S., Carbon, 1989, vol. 27, no. 6, pp. 845–852.CrossRefGoogle Scholar
  22. 22.
    Trenikhin, M.V., Kryazhev, Yu.G., Koval’, N.N., Teresov, A.D., Protasova, O.V., Drozdov, V.A., and Likholobov, V.A., Int. Polym. Sci. Technol., 2014, vol. 40, no. 12, pp. T21–T24.CrossRefGoogle Scholar
  23. 23.
    Trenikhin, M.V., Protasova, O.V., Seropyan, G.M., Semtsov, A.E., and Drozdov, V.A., Nanotechnol. Russ., 2014, vol. 9, nos. 7–8, pp. 461–465.CrossRefGoogle Scholar
  24. 24.
    Kizuka, T., Kato, R., and Miyazawa, K., Carbon, 2009, vol. 47., pp. 138–144.CrossRefGoogle Scholar
  25. 25.
    Trenikhin, M.V., Ivashchenko, O.V., Eliseev, V.S., Tolochko, B.P., Arbuzov, A.B., Muromtsev, I.V., Kryazhev, Yu.G., Drozdov, V.A., Sazhina, E., and Likholobov, V.A., Fullerenes, Nanotubes Carbon Nanostruct., 2015, vol. 23, pp. 801–806.CrossRefGoogle Scholar
  26. 26.
    Trenikhin, M.V., Ivashchenko, O.V., Kryazhev, Yu.G., Tolochko, B.P., Eliseev, V.S., Arbuzov, A.B., Drozdov, V.A., and Likholobov, V.A., Nanotechnol. Russ., 2015, vol. 10, nos. 9–10, pp. 696–700.Google Scholar
  27. 27.
    Bladh, H., Johnsson, J., and Bengtsson, P.E., Appl. Phys. B, 2008, vol. 90, no. 1, pp. 109–125.CrossRefGoogle Scholar
  28. 28.
    Gun’ko, V.M., Kozynchenko, O.P., Tennison, S.R., Leboda, R., Skubiszewska-Zieba, J., and Mikhalovsky, S.V., Carbon, 2012, vol. 50, pp. 3146–3153.CrossRefGoogle Scholar
  29. 29.
    Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodrigues-Reinoso, F., Rouquerol, J., and Sing, K.S.W., Pure Appl. Chem., 2015, vol. 87, nos. 9–10, pp. 1051–1069.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. A. Drozdov
    • 1
    Email author
  • T. I. Gulyaeva
    • 1
  • M. V. Trenikhin
    • 1
  1. 1.Institute of Hydrocarbon Processing Problems, Siberian BranchRussian Academy of SciencesOmskRussia

Personalised recommendations