Advertisement

Russian Journal of Applied Chemistry

, Volume 91, Issue 10, pp 1612–1616 | Cite as

Polyethylene Glycol for LiFePO4/C Composites Preparation: Large or Small Molecular Weight

  • Jianhe HongEmail author
  • Guowei Yin
Organic Synthesis and Industrial Organic Chemistry
  • 9 Downloads

Abstract

Olivine LiFePO4 is challenged by its poor electronic and ionic conductivities for lithium-ion batteries. Polyethylene glycol (PEG) has been applied for LiFePO4 preparation by different research groups, but there is no consensus on the influence of the mean molecular weight of PEG on the structure and electrochemical performances of LiFePO4/C composites. In this work, LiFePO4/C composites were prepared by using micronsized FePO4·2H2O powder as starting material, PEG (mean molecular weight of 200, 400, 4000 or 10000) and citric acid as complex carbon source. The structure and electrochemical performances of LiFePO4/C composites would be decided considerably by the mean molecular weight of PEG, and the sample using PEG200 exhibited the least inter-particle agglomeration, the smallest charge transfer resistance and the highest discharge capacity. A probable growth mechanism is also proposed based on SEM images and electrochemical results: with the assistance of citric acid, PEG molecule with small molecular weight tends to cover one or only a few micron-sized FePO4·2H2O particles, significantly suppress the agglomeration of primary LiFePO4 particles and thus result in uniform particle-size distribution and carbon coating.

Keywords

lithium iron phosphate carbon coating polyethylene glycol mean molecular weight electrochemical performance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Franger, S., Le Cras, F., Bourbon, C., and Rouault, H., Electrochem. Solid-State Lett., 2002, vol. 5, no. 10, pp. A231–A233.CrossRefGoogle Scholar
  2. 2.
    Zhou, G.F., Russ. J. Appl. Chem+., 2017, vol. 90, no. 9, pp. 1519–1523.CrossRefGoogle Scholar
  3. 3.
    Eftekhari, A., J. Power Sources, 2017, vol. 343, pp. 395–411.CrossRefGoogle Scholar
  4. 4.
    Li, X.F., Luo, D.M., Zhang, X., and Zhang, Z., J. Power Sources, 2015, vol. 291, pp. 75–84.CrossRefGoogle Scholar
  5. 5.
    Mat, A., Sulaiman, K.S., and Arof, A.K., Ionics, 2016, vol. 22, no. 1, pp. 135–142.CrossRefGoogle Scholar
  6. 6.
    Kuzmanovic, M., Jugovic, D., and Mitric, M., et al., Ceram. Int., 2015, vol. 41, no. 5, pp. 6753–6758.CrossRefGoogle Scholar
  7. 7.
    Xia, J., Zhu, F.L., and Wang, G.R., et al., Solid State Ionics, 2017, vol. 308, no. 1, pp. 133–138.CrossRefGoogle Scholar
  8. 8.
    Wang, P., Zhang, G., and Li, Z.C., et al., Acs Appl. Mater. Inter., 2016, vol. 8, no. 40, pp. 26908–26915.CrossRefGoogle Scholar
  9. 9.
    Liu, S.X., Yin, H.B., Wang, H.B., and Wang, H., J. Nanosci. Nanotechno., 2014, vol. 14, no. 9, pp. 7060–7065.CrossRefGoogle Scholar
  10. 10.
    Wang, Y.H., Mei, R., and Yang, X.M., Ceram. Int., 2014, vol. 40, no. 6, pp. 8439–8444.CrossRefGoogle Scholar
  11. 11.
    Zhi, X.K., Liang, G.C., and Ou, X.Q., et al., J. Electrochem. Soc., 2017, vol. 164, no. 6, pp. A1285–A1290.CrossRefGoogle Scholar
  12. 12.
    Wang, L.N., Zhan, X.C., Zhang, Z.G., and Zhang, K.L., J. Alloy. Compd., 2008, vol. 456, no. 1, pp. 461–465.CrossRefGoogle Scholar
  13. 13.
    Qiu, S., Zhang, X.G., and Li, Y.W., et al., J. Mater. Sci.-Mater. El., 2016, vol. 27, no. 7, pp. 7255–7264.CrossRefGoogle Scholar
  14. 14.
    Li, X.T., Shao, Z.B., and Liu, K.R., et al., Colloid Surface A, 2017, vol. 529, pp. 850–855.CrossRefGoogle Scholar
  15. 15.
    Wang, F., Fang, Z.W., and Zhang, Y., J. Electroanal. Chem., 2016, vol. 775, pp. 110–115.CrossRefGoogle Scholar
  16. 16.
    Yang, X.H., Tu, J.G., and Lei, M., et al., Electrochim. Acta, 2016, vol. 193, pp. 206–215.CrossRefGoogle Scholar
  17. 17.
    Tan, L.Y., Tang, Q.L., and Chen, X.H., et al., Electrochim. Acta, 2014, vol. 137, no.8, pp. 344–351.CrossRefGoogle Scholar
  18. 18.
    Zhu, J.X., Yoo, K., El-halees, I., and Kisailus, D., Acs. Appl. Mater. Inter., 2014, vol. 6, no. 23, pp. 21550–21557.CrossRefGoogle Scholar
  19. 19.
    Hong, J.H., Wang, Y.F., He, G., and He, M.Z., Mater. Chem. Phys., 2012, vol. 133, no. 1, pp. 573–577.CrossRefGoogle Scholar
  20. 20.
    Liu, H., Cao, Q., and Fu, L.J., et al., Electrochem. Commun., 2006, vol. 8, no. 10, pp. 1553–1557.CrossRefGoogle Scholar
  21. 21.
    Wang, J. and Sun, X., Energy Environ. Sci., 2015, vol. 8, no. 4, pp. 1110–1138.CrossRefGoogle Scholar
  22. 22.
    Bazzi, K., Nazri, M., and Naik, V.M., et al., J. Power Sources, 2016, vol. 306, pp. 17–23.CrossRefGoogle Scholar
  23. 23.
    Zhang, N., Lin, L., and Xu, Z., J. Solid State Electrochem., 2014, vol. 18, no. 9, pp. 2401–2410.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.China University of GeosciencesWuhanChina

Personalised recommendations