Advertisement

Russian Journal of Applied Chemistry

, Volume 91, Issue 10, pp 1603–1611 | Cite as

Scrap Tires Pyrolysis: Product Yields, Properties and Chemical Compositions of Pyrolytic Oil

  • S. Chouaya
  • M. A. AbbassiEmail author
  • R. B. Younes
  • A. Zoulalian
Organic Synthesis and Industrial Organic Chemistry
  • 9 Downloads

Abstract

This investigation involves an experimental study on the pyrolysis of scrap tires under different operating conditions such as feedstock size and pyrolysis temperature by highlighting the properties of the whole liquid products generated during each thermal degradation process. The complete conversion temperature for the pyrolysis of used tires was close to 500‒550°C. The characteristics of liquid fraction were determined by elemental analysis, chromatographic and spectroscopic techniques and distillation data. All the obtained atomic ratios are around 1,4 which is significant that such pyrolytic liquids are a mixture of aliphatic and aromatic compounds derived from polymeric materials. Analysis of the pyrolytic oil (pyro-oil) by chromatographic analysis showed that it was a complex mixture of organic compounds C5‒C26, aromatics and a large proportion of light hydrocarbons that can be used as liquid fuels. Furthermore, the comparison distillation data indicates that more than 40% of such pyrolytic oil fraction with the boiling point range between 180‒360°C is specified for diesel. It is noted that the viscosity decreases obviously from 4.87 to 1.79 with the increase in temperature.

Keywords

scrap tires pyrolytic oil FT-IR GC/MS distillation viscosity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Labaki, M. and Jeguirim, M., Env. Sci. & Pollution Res., 2016, pp. 1–31.Google Scholar
  2. 2.
    Williams, P.T., Waste Manag., 2013, vol. 33, no. 8, pp. 1714–1728.CrossRefGoogle Scholar
  3. 3.
    Choi, G.G., Oh, S.J., and Kim, J.S., Energy, 2016, vol. 114, pp. 457–464.CrossRefGoogle Scholar
  4. 4.
    Shah, J., Jan, M.R., and Mabood, F., Iran. J. Chem. Chem. Eng., 2008, vol. 27, no. 2Google Scholar
  5. 5.
    Islam, M.R., Haniu, H., and Beg, M.R.A., Fuel, 2008, vol. 87, no. 13, pp. 3112–3122.Google Scholar
  6. 6.
    Murillo, R., Aylón, E., Navarro, M. V., Callén, M.S., Aranda, A., and Mastral, A. M., Fuel Proc. Tech., vol. 87(2), pp. 143–147.Google Scholar
  7. 7.
    Ayanoglu, A. and Yumrutas, R., Energy, 2016, vol. 103, pp. 456–468.CrossRefGoogle Scholar
  8. 8.
    Lah, B., Klinar, D., and Likozar, B., Chem. Eng. Sci., 2013, vol. 87, pp. 1–13.CrossRefGoogle Scholar
  9. 9.
    Aguado, R., Arrizabalaga, A., Arabiourrutia, M., Lopez, G., Bilbao, J., and Olazar, M., Chem. Eng. Sci., 2014, vol. 106, pp. 9–17.CrossRefGoogle Scholar
  10. 10.
    González, J.F., Encinar, J.M., Canito, J.L., and Rodri´guez, J.J., J. Anal. & Appl. Pyrolysis, 2001, vol. 58, pp. 667–683.CrossRefGoogle Scholar
  11. 11.
    Laresgoiti, M.F., Caballero, B.M., de Marco, I., Torres, A., Cabrero, M.A., and Chomón, M.J., J. Anal. & Appl. Pyrolysis, 2004, vol. 71, no. 2, pp. 917–934.CrossRefGoogle Scholar
  12. 12.
    Cunliffe, A.M. and Williams, P.T., J. Anal. & Appl. Pyrolysis, 1998, vol. 44, no. 2, pp. 131–152.CrossRefGoogle Scholar
  13. 13.
    Dai, X., Yin, X., Wu, C., Zhang, W., and Chen, Y., Energy, 2001, vol. 26, no. 4, pp. 385–399.CrossRefGoogle Scholar
  14. 14.
    Conesa, J.A., Font, R., Fullana, A., and Caballero, J.A., Fuel, 1998, vol. 77, no. 13, pp. 1469–1475.CrossRefGoogle Scholar
  15. 15.
    Pakdel, H., Pantea, D.M., and Roy, C., J. Anal. & Appl. Pyrolysis, 2001, vol. 57(1), 91–107.CrossRefGoogle Scholar
  16. 16.
    Martínez, J.D., Puy, N., Murillo, R., Garcia, T., Navarro, M.V., and Mastral, A.M., Renewable & Sustainable Energy Reviews, vol. 23, pp. 179–213.Google Scholar
  17. 17.
    Barbooti, M.M., Mohamed, T.J., Hussain, A.A., and Abas, F.O., J. Anal. & Appl. Pyrolysis, 2004, vol. 72(1), pp. 165–170.CrossRefGoogle Scholar
  18. 18.
    Mastral, A.M., Murillo, R., Callen, M.S., Garcia, T., and Snape, C.E., Energy & Fuels, 2000, vol. 14, no. 4, pp. 739–744.CrossRefGoogle Scholar
  19. 19.
    Koufopanos, C.A., Lucchesi, A., and Maschio, G., Canadian J. Chem. Eng., vol. 67(1), pp. 75–84.Google Scholar
  20. 20.
    Murugan, S., Ramaswamy, M.C., and Nagarajan, G., 2008, Fuel Proc. Tech., vol. 89, no. 2, pp. 152–159.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. Chouaya
    • 1
  • M. A. Abbassi
    • 2
    Email author
  • R. B. Younes
    • 1
  • A. Zoulalian
    • 3
  1. 1.Faculty of Sciences of GafsaPhysics, Informatics and Mathematics Research Unit (PIM)GafsaTunisia
  2. 2.Faculty of Sciences of GafsaMaterials Research Unit, Energy and Renewable Energy (MEER)GafsaTunisia
  3. 3.Faculty of Sciences and Technologies, Aiguillettes CampusUniversity of Lorraine, LERMABNancyFrance

Personalised recommendations