Russian Journal of Applied Chemistry

, Volume 91, Issue 10, pp 1574–1580 | Cite as

Magneto-Optical Effects in Colloidal Solutions of Barium Hexaferrite

  • S. N. Lysenko
  • A. V. Lebedev
  • S. A. Astaf’evaEmail author
  • M. Balasoiu
Physicochemical Studies of Systems and Processes


Hydrothermal synthesis was used to obtain lamellar magnetic particles of barium hexaferrite, and colloidal solutions were prepared on their basis. Magneto-optical effects in colloid solutions of barium hexaferrite were examined. It was found that the aqueous colloidal solution of coarse planar particles of barium hexaferrite is a magneto-optical medium that is nearly two orders of magnitude more effective than the colloid formed from isometric cobalt ferrite particles. It was shown that measuring the frequency dependence of the magneto-optical effects and approximating the experimental data with the Debye function makes it possible to find the frequency f0 characteristic of the given colloid and to calculate the characteristic size of particles (or aggregates) creating the optical anisotropy in the colloid under the action of a magnetic field. A dichroism is observed in the aqueous colloid formed by coarse planar barium hexaferrite particles. This phenomenon is due to the change in the light scattering on coarse particles upon their orientation by a magnetic field.


barium hexaferrite colloidal solution hydrothermal synthesis lamellar magnetic particles magnetooptical effects 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zhao, Y., Zhang, Y.Y., Lv, R.Q., and Wang, Q., J. Mag n. Magn. Mater., 2011, vol. 323, pp. 2987–2996.CrossRefGoogle Scholar
  2. 2.
    Zhao, Y., Lv, R.Q., Zhang, Y.Y., and Wang, Q., Opt. Lasers Eng., 2012, vol. 50, no. 9, pp. 1177–1184.CrossRefGoogle Scholar
  3. 3.
    Hu, T. and Zhao, Y., Opt. Precis. Eng., 2009, vol. 17, no. 10, pp. 2445–2449 (in Chinese).Google Scholar
  4. 4.
    Hong, C.H. and Yang, S.Y., J. Appl. Phys., 2003, vol. 94, no. 6, pp. 3849–3852.CrossRefGoogle Scholar
  5. 5.
    Yang, S.Y. and Chen, Y.F., Appl. Phys. Lett., 2002, vol. 81, no. 26, pp. 4931–4933.CrossRefGoogle Scholar
  6. 6.
    Yang, S.Y., Chiu, Y.P., Jeang, B.Y., Horng, H.E., Hong Chin-Yih, and Yang, H.C., Appl. Phys. Lett., 2001, vol. 79, no. 15, pp. 2372–2374.CrossRefGoogle Scholar
  7. 7.
    Jamon, D., Donatini, F., Siblini, A., Royer, F., Perzynski, R., Cabuil, V., and Neveu, S., J. Magn. Magn. Mater., 2009, vol. 321, pp. 1148–1154.CrossRefGoogle Scholar
  8. 8.
    Chung Seok-Hwan, Grimsditch Marcos, Hoffmann Axel, Bader Samuel D., Xie Jin, Peng Sheng, and Sun Shouheng, J. Magn. Magn. Mater., 2008, vol. 320, pp. 91–95.CrossRefGoogle Scholar
  9. 9.
    Primc, D., Makovec, D., Lisjak, D., and Drofenik, M., Nanotechnology, 2009, vol. 20, no. 31, pp. 1–9.CrossRefGoogle Scholar
  10. 10.
    Makovec, D., Primc, D., Sturm, S., Kodre, A., Hanzel, D., and Drofenik, M., J. Solid State Chem., 2012, vol. 196, pp. 63–71.CrossRefGoogle Scholar
  11. 11.
    Balasoiu, M., Ivankov, O.I., Soloviov, D.V., Lysenko, S.N. Yakushev, R.M., Balasoiu-Gaina, A.-M., and Lupu, N., J. Optoelectron. Adv. Mater., 2015, vol. 17, nos. 7–8, pp. 1114–1121.Google Scholar
  12. 12.
    Landsberg, G.S., Optika (Optics), Moscow: Nauka, 1976.Google Scholar
  13. 13.
    Mertelj, A. and Lisjak, D., Liq. Cryst. Rev., 2017, vol. 5, no. 1, pp. 1–33.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. N. Lysenko
    • 1
  • A. V. Lebedev
    • 2
  • S. A. Astaf’eva
    • 1
    Email author
  • M. Balasoiu
    • 3
  1. 1.Institute of Technical Chemistry, Perm Federal Research Center, Ural BranchRussian Academy of SciencesPermRussia
  2. 2.Institute of Continuous Media Mechanics, Perm Federal Research Center, Ural BranchRussian Academy of SciencesPermRussia
  3. 3.Horia Hulubei National Institute of Physics and Nuclear EngineeringBucharest–MagureleRomania

Personalised recommendations