Russian Journal of Applied Chemistry

, Volume 91, Issue 9, pp 1549–1558 | Cite as

Removal of Some Radionuclides Using Stannic Silicovanadate as Inorganic Ion Exchanger

  • Y. F. El-Aryan
  • E. A. Abdel-GalilEmail author
  • N. Belacy
Inorganic Synthesis and Industrial Inorganic Chemistry


Adsorption of cesium (Cs+), strontium (Sr2+), and europium (Eu3+) onto stannic silico vanadate as ion exchange material, and the effects of experimental conditions on adsorption were considered. The material were characterized by X-ray diffractometer system (XRD), scanning electron microscopy (SEM), X-ray fluorescence spectrometry (XRF), infrared (IR), and thermal analysis (TGA and DTA). The selectivity coefficients for different cations determined by mixed solution method were found to be less than unity. The thermodynamic parameters such as ΔG*, ΔS*, and ΔH* have also been calculated for the adsorption of Cs+, Sr2+, and Eu3+ onto stanic silicovanadate, showing that the overall adsorption process is spontaneous and endothermic.


preparation characterization adsorption thermodynamic parameters 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abd El-Latif, M.M. and Elkady, M.F., Desalination, 2011, vol. 271, pp. 41–54.CrossRefGoogle Scholar
  2. 2.
    Wu, Jiaojiao, Li, Bing, Liao, Jiali, Feng, Yue, Zhang, Dong, Zhao, Jun, Wen, Wei, Yang, Yuanyou, and Liu, Ning, Radioactivity, 2009, vol. 100, pp. 914–920Google Scholar
  3. 3.
    Abd El-Latif, M.M. and Elkady, M.F., Materials Res. Bull., 2011, vol. 46, pp. 105–118.CrossRefGoogle Scholar
  4. 4.
    Nabi, S.A. and Naushad, M.I., J. Hazard. Mater., 2007, vol. 142, pp. 404–411.CrossRefGoogle Scholar
  5. 5.
    Nabi, S. and Khan, A.M., Synth. React. Funct. Polym., 2006, vol. 66, pp. 495–508.CrossRefGoogle Scholar
  6. 6.
    Sölenera, Musa, Tunali, Sibel, Özcan, A. Safa, Özcan, Adnan, and Gedikbey, Tevfik, Desalination, 2008, vol. 223, pp. 308–322.Google Scholar
  7. 7.
    Gadd, G.M., in Accumulation of Metals by Microorganisms and Algae, Rehm, H.-J., Ed., VCH, Weinheim, 1988, pp. 401–433.Google Scholar
  8. 8.
    Niu, H., Shu, X., Wang, J.H., and Volesky, B., Biotechnol. Bioeng., 1993, vol. 42, pp. 785–787.CrossRefGoogle Scholar
  9. 9.
    Gong, R., Ding, Y., Liu, H., Chen, Q., and Liu, Z., Chemosphere, 2005, vol. 58, no. 1, pp. 125–130.CrossRefGoogle Scholar
  10. 10.
    Murray, J.W. and Dillard, J.G., Geochim. Cosmochim. Acta, 1979, vol. 43, pp. 781–787.CrossRefGoogle Scholar
  11. 11.
    Chu, B.S., Baharin, B.S., Che Man, Y.B., and Quek, S.Y., J. Food Eng., 2004, vol. 62, no. 1, pp. 105–111.Google Scholar
  12. 12.
    Yu, Y., Zhuang, Y.Y., and Wang, Z.H., J. Colloid Interf. Sci., 2001, vol. 242, no. 2, pp. 288–293.CrossRefGoogle Scholar
  13. 13.
    Alberti, G., Toracca, E., and Conte, E., J. Inorg. Nucl. Chem., 1966, vol. 28, pp. 607–612.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Y. F. El-Aryan
    • 1
    • 2
  • E. A. Abdel-Galil
    • 1
    Email author
  • N. Belacy
    • 1
  1. 1.Atomic Energy Authority, Hot Labs. CentreCairoEgypt
  2. 2.Chemistry Department, Faculty of SciencesBisha UniversityBishaSaudi Arabia

Personalised recommendations