Russian Journal of Applied Chemistry

, Volume 91, Issue 9, pp 1538–1548 | Cite as

Influence of the Conditions for Preparing LaPO4-Based Materials with Inclusions of the LaP3O9 Phase on Their Thermal and Mechanical Properties

  • K. M. Kenges
  • O. V. Proskurina
  • D. P. Danilovich
  • M. K. Aldabergenov
  • V. V. Gusarov
Inorganic Synthesis and Industrial Inorganic Chemistry


A material based on lanthanum orthophosphate LaPO4 with inclusion of particles of lanthanum metaphosphate LaP3O9 was synthesized. The influence of the process parameters of the synthesis on the structure and properties of the material was determined. Heat treatment of the coprecipitated lanthanum phosphates at 700°C leads to the formation of a nanopowder with the LaPO4crystallite size of approximately 17 nm. Heat treatment of the nanopowder at temperatures from 1100 to 1500°C yields compact materials based on the LaPO4–LaP3O9 system. The heat treatment of the nanopowder at 1100°C leads to a sharp decrease in the porosity of the material (to ~5%) at insignificant grain growth (200–400 nm); under these conditions, the thermal conductivity [λ(25°C) = 3.2 W m–1 K–1], microhardness [Hv(25°C) = 4.6 ± 0.4 GPa], Young’s modulus [E(25°C) = 132 ± 9 GPa], and cracking resistance [K1c(25°C) = 1.6 ± 0.1 MPa m1/2] pass through maxima. The thermal expansion coefficient of the material depends on the heat treatment conditions only slightly and amounts to (8.2 ± 0.2) × 10–6 K–1.


lanthanum orthophosphate LaPO4 lanthanum metaphosphate LaP3O9 thermal properties mechanical properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Neumeier, S., Arinicheva, Y., Ji, Y., Heuser, J.M., Kowalski, P.M., Kegler, P., Schlenz, H., Bosbach, D., and Deissmann, G., Radiochim. Acta, 2017, vol. 105, no. 11, pp. 961–984.CrossRefGoogle Scholar
  2. 2.
    Yang, J., Wan, C., Zhao, M., Shahid, M., and Pan, W., J. Eur. Ceram. Soc., 2016, vol. 36, no. 15, pp. 3809–3814.CrossRefGoogle Scholar
  3. 3.
    Dacheux, N., Clavier, N., and Podor, R., Am. Mineral., 2013, vol. 98, nos. 5–6, pp. 833–847.CrossRefGoogle Scholar
  4. 4.
    Rojas, J.V., Woodward, J.D., Chen, N., Rondinone, A.J., Castano, C.H., and Mirzadeh, S., Nucl. Med. Biol., 2015, vol. 42, no. 7, pp. 614–620.CrossRefGoogle Scholar
  5. 5.
    Hikichi, Y. and Nomura, T., J. Am. Ceram. Soc., 1987, vol. 70, no. 10, pp. 252–253.CrossRefGoogle Scholar
  6. 6.
    Ananthapadmanabhan, P.V., Sreekumar, K.P., Thiyagarajan, T.K., Satpute, R.U., Krishnan, K., Kulkarni, N.K., and Kutty, T.R.G., Mater. Chem. Phys., 2009, vol. 113, no. 1, pp. 417–421.CrossRefGoogle Scholar
  7. 7.
    Gavrichev, K.S., Ryumin, M.A., Tyurin, A.V., Khoroshilov, A.V., Mezentseva, L.P., Osipov, A.V., Ugolkov, V.L., and Gusarov, V.V., J. Therm. Anal. Calorim., 2010, vol. 102, pp. 809–811.CrossRefGoogle Scholar
  8. 8.
    Gavrichev, K.S., Ryumin, M.A., Tyurin, A.V., Gurevich, V.M., and Komissarova, L.N., Thermochim. Acta, 2008, vol. 474, nos. 1–2, pp. 47–51.Google Scholar
  9. 9.
    Bryukhanova, K.I., Nikiforova, G.E., and Gavrichev, K.S., Nanosystems: Phys. Chem. Math., 2016, vol. 7, no. 3, pp. 451–458.Google Scholar
  10. 10.
    Errandonea, D., Gomis, O., Rodriguez-Hernandez, P., Munoz, A., Ruiz-Fuertes, J., Gupta, M., Achary, S.N., Hirsch, A., Manjon, F.J., and Peters, L. J. Phys.: Condens. Matter, 2018, vol. 30, no. 6, paper 065401.Google Scholar
  11. 11.
    Sujith, S.S., ArunKumar, S.L., Mangalaraja, R.V., Mohamed, A.P., and Ananthakumar, S., Ceram. Int., 2014, vol. 40, no. 9, pp. 15121–15129.CrossRefGoogle Scholar
  12. 12.
    Li, F., Li, Z., Cai, Y., Zhang, M., Shen, Y., Wang, X., Wu, M., Li, Y., Chen, C., and He, X., Mater. Lett., 2017, vol. 188, pp. 343–346.CrossRefGoogle Scholar
  13. 13.
    Kenges, K.M., Proskurina, O.V., Danilovich, D.P., Aldabergenov, M.K., and Gusarov, V.V., Russ. J. Appl. Chem., 2017, vol. 90, no. 7, pp. 1047–1054.CrossRefGoogle Scholar
  14. 14.
    Babelot, C., Bukaemskiy, A., Neumeier, S., Modolo, G., and Bosbach, D., J. Eur. Ceram. Soc., 2017, vol. 37, no. 4, pp. 1681–1688.CrossRefGoogle Scholar
  15. 15.
    Gallini, S., Jurado, J.R., and Colomer, M.T., Chem. Mater., 2005, vol. 17, pp. 4154–4161.CrossRefGoogle Scholar
  16. 16.
    Bregiroux, D., Audubert, F., Charpentier, T., Sakellariou, D., and Bernache-Assollant, D., Solid State Sci., 2007, vol. 9, no. 5, pp. 432–439.CrossRefGoogle Scholar
  17. 17.
    Osipov, A.V., Mezentseva, L.P., Drozdova, I.A., Kuchaeva, S.K., Ugolkov, V.L., and Gusarov, V.V., Glass Phys. Chem., 2009, vol. 35, no. 4, pp. 431–435.CrossRefGoogle Scholar
  18. 18.
    Ugolkov, V.L., Mezentseva, L.P., Osipov, A.V., Popova, V.F., Maslennikova, T.P., Akatov, A.A., and Doil’nitsyn, V.A., Russ. J. Appl. Chem., 2017, vol. 90, no. 1, pp. 28–33.CrossRefGoogle Scholar
  19. 19.
    Man, M.-G., Deng, F., and Yao, K., Mater. Lett., 2014, vol. 124, pp. 173–176.CrossRefGoogle Scholar
  20. 20.
    Proskurina, O.V., Tomkovich, M.V., Bachina, A.K., Sokolov, V.V., Danilovich, D.P., Panchuk, V.V., Semenov, V.G., and Gusarov, V.V., Russ. J. Gen. Chem., 2017, vol. 87, no. 11, pp. 2507–2515.CrossRefGoogle Scholar
  21. 21.
    Osipov, A.V., Mezentseva, L.P., Drozdova, I.A., Kuchaeva, S.K., Ugolkov, V.L., and Gusarov, V.V., Glass Phys. Chem., 2007, vol. 33, no. 2, pp. 169–173.CrossRefGoogle Scholar
  22. 22.
    Maslennikova, T.P., Osipov, A.V., Mezentseva, L.P., Drozdova, I.A., Kuchaeva, S.K., Ugolkov, V.L., and Gusarov, V.V., Glass Phys. Chem., 2010, vol. 36, no. 3, pp. 351–357.CrossRefGoogle Scholar
  23. 23.
    Schatzmann, M.T., Mecartney, M.L., and Morgan, P.E.D., J. Mater. Chem., 2009, vol. 19, no. 32, pp. 5720–5722.CrossRefGoogle Scholar
  24. 24.
    Rajendran, V. and Ramamoorthy, C., J. Inorg. Organomet. Polym. Mater., 2017, vol. 27, no. 6, pp. 1886–1892.CrossRefGoogle Scholar
  25. 25.
    Colomer, M.T. and Ortiz, A.L., Ceram. Int., 2016, vol. 42, no. 16, pp. 18074–18086.CrossRefGoogle Scholar
  26. 26.
    Che, D., Zhu, X., Liu, P., Duan, Y., Wang, H., Zhang, Q., and Li, Y., J. Luminescence, 2014, vol. 153, pp. 369–374.CrossRefGoogle Scholar
  27. 27.
    Bregiroux, D., Lucas, S., Champion, E., Audubert, F., and Bernache-Assollant, D., J. Eur. Ceram. Soc., 2006, vol. 26, no. 3, pp. 279–287.CrossRefGoogle Scholar
  28. 28.
    Park, H.D. and Kreidler, E.R., J. Am. Ceram. Soc., 1984, vol. 67, no. 1, pp. 23–26.CrossRefGoogle Scholar
  29. 29.
    Toyoura, K., Hatada, N., Nose, Y., Uda, T., and Tanaka, I., Phys. Rev. B, 2011, vol. 84, no. 18, paper 184301.Google Scholar
  30. 30.
    Ortega García, B., Kharissova, O.V., Rasika Dias, H.V., Servando Aguirre, F., and Salinas Hernández, J., Nanosystems: Phys. Chem. Math., 2016, vol. 7, no. 1, pp. 161–168.Google Scholar
  31. 31.
    Bespalova, Zh.I. and Khramenkova, A.V., Nanosystems: Phys. Chem. Math., 2016, vol. 7, no. 3, pp. 433–450.Google Scholar
  32. 32.
    Davis, J.B., Marshall, D.B., and Morgan, P.E.D., J. Eur. Ceram. Soc., 2000, vol. 20, no. 5, pp. 583–587.CrossRefGoogle Scholar
  33. 33.
    Arinicheva, Y., Clavier, N., Neumeier, S., Podor, R., Bukaemskiy, A., Klinkenberg, M., Roth, G., Dacheux, N., and Bosbach, D., J. Eur. Ceram. Soc., 2018, vol. 38, no. 1, pp. 227–234.CrossRefGoogle Scholar
  34. 34.
    Dul’nev, G.N. and Zarichnyak, Yu.P., Teploprovodnost’ smesei i kompozitsionnykh materialov (Thermal Conductivity of Mixtures and Composite Materials), Leningrad: Energiya, 1974.Google Scholar
  35. 35.
    Zhang, D., Zhao, Z., Wang, B., Li, S., and Zhang, J., Mater. Des., 2016, vol. 112, pp. 27–33.CrossRefGoogle Scholar
  36. 36.
    Du, A., Wan, C., Qu, Z., and Pan, W., J. Am. Ceram. Soc., 2009, vol. 92, no. 11, pp. 2687–2692.CrossRefGoogle Scholar
  37. 37.
    Morgan, P.E.D. and Marshall, D.B., J. Am. Ceram. Soc., 1995, vol. 70, no. 6, pp. 1553–1563.CrossRefGoogle Scholar
  38. 38.
    Perrière, L., Bregiroux, D., Naitali, B., Audubert, F., Champion, E., Smith, D.S., and Bernache-Assollant, D., J. Eur. Ceram. Soc., 2007, vol. 27, no. 10, pp. 3207–3213.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • K. M. Kenges
    • 1
  • O. V. Proskurina
    • 2
    • 3
  • D. P. Danilovich
    • 3
  • M. K. Aldabergenov
    • 1
  • V. V. Gusarov
    • 2
  1. 1.Al-Farabi Kazakh National UniversityAlmatyKazakhstan
  2. 2.Ioffe InstituteRussian Academy of SciencesSt. PetersburgRussia
  3. 3.St. Petersburg State Institute of Technology (Technical University)St. PetersburgRussia

Personalised recommendations