Advertisement

Russian Journal of Applied Chemistry

, Volume 91, Issue 9, pp 1478–1485 | Cite as

Technologies for Processing of Crude Glycerol from Biodiesel Production: Synthesis of Solketal and Its Hydrolysis to Obtain Pure Glycerol

  • G. S. Dmitriev
  • L. N. Zanaveskin
  • A. V. Terekhov
  • V. O. Samoilov
  • I. A. Kozlovskii
  • A. L. Maksimov
Organic Synthesis and Industrial Organic Chemistry
  • 5 Downloads

Abstract

Information on the volume of production of biodiesel and crude glycerol from it is analyzed. The possibility of using crude glycerol as a feedstock for preparing solketal is demonstrated. The specific features of the solketal synthesis from crude glycerol and of separation of the reaction products are described. A catalytic process is suggested for selective decomposition of solketal to glycerol to obtain purified glycerol of any required concentration up to 99.8 wt %. A flowsheet is suggested for processing of crude glycerol to obtain solketal and subsequently converting it to obtain pure glycerol.

Keywords

glycerol solketal biodiesel fatty acids sulfuric acid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wan Omar, W.N.N., and Saidina Amin, N.A., Biomass Bioenergy, 2011, vol. 35, no. 3, pp. 1329–1338.CrossRefGoogle Scholar
  2. 2.
    Magara-Gomez, K.T., Olson, M.R., Okuda, T., Walz, K.A., and Schauer, J.J., Atmosph. Environ., 2012, vol. 50, no. 4, pp. 307–313.CrossRefGoogle Scholar
  3. 3.
    Ardi, M.S., Aroua, M.K., and Awanis Hashim, N., Renew. Sustain. Energy Rev., 2015, vol. 42, pp. 1164–1173.CrossRefGoogle Scholar
  4. 4.
    Konstantinović, S.S., Danilović, B.R., Ćirić, J.T., Ilić, S.B., Savić, D.S., and Veljković, V.B., Chem. Ind. Chem. Eng. Q., 2016, vol. 22, no. 4, pp. 461–489.CrossRefGoogle Scholar
  5. 5.
    Dmitriev, G. and Zanaveskin, L., Chem. Eng. Trans., 2011, vol. 24, part 1, pp. 43–48.Google Scholar
  6. 6.
    Dmitriev, G.S., Terekhov, A.V., Zanaveskin, L.N., Khadzhiev, S.N., Zanaveskin, K.L., and Maksimov, A.L., Russ. J. Appl. Chem., 2016, vol. 89, no. 10, pp. 1619–1624.CrossRefGoogle Scholar
  7. 7.
    Quispe, C.A.G., Coronado, C.J.R., and Carvolho, J.A., Jr., Renew. Sustain. Energy Rev., 2013, vol. 27, pp. 475–493.CrossRefGoogle Scholar
  8. 8.
    Mota, C.J.A., da Silva, C.X.A., Rosenbach, N., Jr., Costa, J., and da Silva, F., Energy Fuels, 2010, vol. 24, no. 4, pp. 2733–2736.CrossRefGoogle Scholar
  9. 9.
    Dmitriev, G.S., Terekhov, A.V., Khadzhiev, S.N., and Zanaveskin, L.N., Russ. J. Appl. Chem., 2016, vol. 89, no. 1, pp. 45–50.CrossRefGoogle Scholar
  10. 10.
    Monbaliu, J.-C.M., Winter, M., Chevalier, B., Schmidt, F., Jiang, Y., Hoogendoorn, R., Kousemaker, M.A., and Stevens, C.V., Bioresourse Technol., 2011, vol. 102, no. 19, pp. 9304–9307.CrossRefGoogle Scholar
  11. 11.
    Patent JP 2006290815, Publ. 2006.Google Scholar
  12. 12.
    Katryniok, B., Paul, S., Carpon, M., and Dumeignil, F., Chem. Sustain. Chem., 2009, vol. 2, no. 8, pp. 719–730.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • G. S. Dmitriev
    • 1
  • L. N. Zanaveskin
    • 1
  • A. V. Terekhov
    • 1
  • V. O. Samoilov
    • 1
  • I. A. Kozlovskii
    • 2
  • A. L. Maksimov
    • 1
  1. 1.Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia
  2. 2.Mendeleev University of Chemical Technology of RussiaMoscowRussia

Personalised recommendations