Advertisement

Russian Journal of Applied Chemistry

, Volume 91, Issue 9, pp 1434–1440 | Cite as

Synthesis and Properties of La0.95Sr0.05ScO3–δ Protic Electrolyte Films on Porous Cathode Material

  • A. V. Kuzmin
  • A. S. Lesnichyova
  • M. S. Plekhanov
  • A. Yu. Stroeva
  • V. A. Vorotnikov
  • A. V. Ivanov
Applied Electrochemistry and Metal Corrosion Protection
  • 5 Downloads

Abstract

Fundamental aspects of the phase formation and morphology of films of the proton-conducting solid electrolyte La0.95Sr0.05ScO3–δ, produced by wet deposition from inorganic salts on a porous cathode substrate La0.6Sr0.4MnO3–δ. The conditions in which gas-tight films are deposited onto substrates with porosity of up to 25% were determined. The electrical conductivity of La0.95Sr0.05ScO3–δ films was examined in relation to temperature and gas-phase composition (рН2О, рО2). The effect of the architecture of the electrolyte membrane on its transport properties was analyzed. The results of the study are of fundamental importance for development of proton-ceramic fuel cells with a supporting electrode.

Keywords

thin films chemical deposition proton-conducting electrolyte proton-ceramic fuel cell LaScO3 strontium-doped lanthanum scandate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Laguna-Bercero, M.A., Rev. J. Power Sources, 2012, vol. 203, pp. 4–16.CrossRefGoogle Scholar
  2. 2.
    Kawada, T. and Mizusaki, J., Fundam., Techno l., Appl., 2003, vol. 4, pp. 987–1001.Google Scholar
  3. 3.
    Kreuer, K.-D., Paddison, S.J., Spohr, E., and Schuster, M., Chem. Rev., 2004, vol. 104, pp. 4637–4678.CrossRefGoogle Scholar
  4. 4.
    Malavasi, L., Fisher, C.A.J., and Islam, M.S., Chem. Soc. Rev., 2010, vol. 39, pp. 4370–4387.CrossRefGoogle Scholar
  5. 5.
    Iwahara, H., Solid State Ionics, 1996, vols. 86–88, pp. 9–15.Google Scholar
  6. 6.
    Wachsman, E.D., Science, 2011, vol. 334, pp. 935–939.CrossRefGoogle Scholar
  7. 7.
    Shao, Z. and Tadé, M.O., Intermediate-Temperature Solid Oxide Fuel Cells: Materials and Applications, Springer, 2016.CrossRefGoogle Scholar
  8. 8.
    Yugami, H., Kato, H., and Iguchi, F., Adv. Sci. Technol., 2014, vol. 95, pp. 66–71.CrossRefGoogle Scholar
  9. 9.
    Zhang, Y., Knibbe, R., Sunarso, J., Zhong, Y., Zhou, W., Shao, Z., and Zhu, Z., Adv. Mater., 2017, vol. 29, no. 48, pp. 1–33.Google Scholar
  10. 10.
    Panthi, D. and Tsutsumi, A., J. Solid State Electrochem., 2014, vol. 18, no. 7, pp. 1899–1905.CrossRefGoogle Scholar
  11. 11.
    Shim, J.H., Park, J.S., An, J., Gür, T.M., Kang, S., and Prinz, F.B., Chem. Mater., 2009, vol. 21, pp. 3290–3296.CrossRefGoogle Scholar
  12. 12.
    Dunyushkina, L.A., Pankratov, A.A., Gorelov, V.P., Brouzgou, A., and Tsiakaras, P., Electrochim. Acta, 2016, vol. 202, pp. 39–46.CrossRefGoogle Scholar
  13. 13.
    Nandasiri, M.I. and Thevuthasan, S., Thin Film Struc tures in Energy Applications, Babu Krishna Moorthy, S, Ed., Springer Int. Publ., 2015, pp. 167–214.Google Scholar
  14. 14.
    Zhang, Y., Gao, J., Meng, G., and Liu, X., J. Appl. Electrochem., 2004, vol. 34, no. 6, pp.637–641.Google Scholar
  15. 15.
    Antonova, E.P., Kolchugin, A.A., Pikalova, E.Y., Medvedev, D.A., and Bogdanovich, N.M., Solid State Ionics, 2017, vol. 306, pp. 55–61.CrossRefGoogle Scholar
  16. 16.
    Lyagaeva, J., Medvedev, D., Pikalova, E., Plaksin, S., Brouzgou, A., Demin, A., and Tsiakaras, P., Int. J. Hydrogen Energy, 2017, vol. 42, pp. 1715–1723.CrossRefGoogle Scholar
  17. 17.
    Lybye, D., Solid State Ionics, 2000, vol. 128, pp. 91–103.CrossRefGoogle Scholar
  18. 18.
    Lybye, D. and Bonanos, N., Solid State Ionics, 1999, vol. 125, pp. 339–344.CrossRefGoogle Scholar
  19. 19.
    Nomura, K., Takeuchi, T., Kageyama, H., and Miyazaki, Y., Solid State Ionics, 2003, vols. 162–163, pp. 99–104.Google Scholar
  20. 20.
    Fujii, N., Katayama, Y., Shimura, T., and Iwahara, H., J. Electroceram., 1998, vol. 2, no. 2, pp. 119–125.CrossRefGoogle Scholar
  21. 21.
    Stroeva, A.Yu. and Gorelov, V.P., Russ. J. Electrochem., 2012, vol. 48, no. 11, pp. 1079–1085.CrossRefGoogle Scholar
  22. 22.
    Stroeva, A.Yu., Gorelov, V.P., Kuzmin, A.V., Antonova, E.P., and Plaksin, S.V., Russ. J. Electrochemi., 2012, vol. 48, no. 5, pp. 509–517.CrossRefGoogle Scholar
  23. 23.
    Gorelov, V.P. and Stroeva, A.Yu., Russ. J. Electrochem., 2012, vol. 48, no. 10, pp. 949–960.CrossRefGoogle Scholar
  24. 24.
    Farlenkov, A.S., Putilov, L.P., Ananyev, M.V., Antonova, E.P., Eremin, V.A., Stroeva, A.Y., Sherstobitova, E.A., Voronin, V.I., Berger, I.F., Tsidilkovski, V.I., and Gorelov, V.P., Solid State Ionics, 2017, vol. 306, pp. 126–136.CrossRefGoogle Scholar
  25. 25.
    Iguchi, F., Yamane, T., Kato, H., Yugami, H., Solid State Ionics, 2015, vol. 275, pp. 117–121.CrossRefGoogle Scholar
  26. 26.
    Kuzmin, A.V., Stroeva, A.Yu., Gorelov, V.P., Plekhanov, M.S., and Farlenkov, A.S., Al’tern. Energ. Ekol., 2017, vols. 31–36, pp. 36–47.Google Scholar
  27. 27.
    Istomin, S.Ya. and Antipov, E.V., Russ. Chem. Rev., 2013, vol. 82, no. 7, pp. 686–700.CrossRefGoogle Scholar
  28. 28.
    Sun, C., Hui, R., and Roller, J., J Solid State Electro chem., 2010, vol. 14, pp. 1125–1144.CrossRefGoogle Scholar
  29. 29.
    Huang, K., Feng, M., Goodenough, J.B., and Schmerling, M., J. Electrochem. Soc., 1996, vol. 143, no. 11, pp. 3630–3636.CrossRefGoogle Scholar
  30. 30.
    Beresnev, S.M., Bobrenok, O.F., Kuzin, B.L., Bogdanovich, N.M., Kurteeva, A.A., Osinkin, D.A., Vdovin, G.K., and Bronin, D.I., Russ. J. Electrochem., 2012, vol. 48, no. 10, pp. 969–975).CrossRefGoogle Scholar
  31. 31.
    Stevenson, J.W., Armstrong, T.R., Pederson, L.R., Li, J., Lewinsohn, C.A., and Baskaran, S., Solid State Ionics, 1998, vols. 113–115, pp. 571–583.Google Scholar
  32. 32.
    Kurteeva, A.A., Bogdanovich, N.M., Bronin, D.I., Porotnikova, N.M., Vdovin, G.K., Pankration, A.A., Beresnev, S.M., and Kuzmina, L.A., Russ. J. Electro chem., 2010, vol. 46, no. 7, pp. 811–819.CrossRefGoogle Scholar
  33. 33.
    Kuzmin, A.V., Stroeva, A.Yu., Gorelov, V.P., Novikova, Yu.V., Lesnicheva, A.S., Farlenkov, A.S., and Khodimchuk, A.V., Al’tern. Energ. Ekol., 2017, vols. 28–30, pp. 54–68.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. V. Kuzmin
    • 1
    • 2
  • A. S. Lesnichyova
    • 1
    • 2
  • M. S. Plekhanov
    • 1
  • A. Yu. Stroeva
    • 1
    • 2
  • V. A. Vorotnikov
    • 1
    • 2
  • A. V. Ivanov
    • 1
    • 2
  1. 1.Institute of High-Temperature Electrochemistry, Ural BranchRussian Academy of SciencesYekaterinburgRussia
  2. 2.Ural Federal University named after the First President of Russia B.N. YeltsinYekaterinburgRussia

Personalised recommendations