Advertisement

Russian Journal of Applied Chemistry

, Volume 91, Issue 9, pp 1427–1433 | Cite as

Thermochemical and Electrochemical Stability of Electrolyte Systems based on Sulfolane

  • L. V. Sheina
  • E. V. Kuz’mina
  • E. V. Karaseva
  • A. G. Gallyamov
  • T. R. Prosochkina
  • V. S. Kolosnitsyn
Applied Electrochemistry and Metal Corrosion Protection
  • 6 Downloads

Abstract

UV spectroscopy and cyclic voltammetry were used to examine the thermochemical and electrochemical stabilities of liquid sulfolane-based electrolyte systems for lithium and lithium-ion batteries. It was found that solutions of lithium salts in sulfolane are stable in prolonged keeping at 100°C. The thermochemical stability of lithium salt solutions in sulfolane changes in the order LiBF4 > LiClO4 ≈ LiN(CF3SO2)2 > LiCF3SO3. It was shown that the electrochemical stability of lithium salt solutions in sulfolane is in the range from 5.5 to 5.9 V (relative to Li/Li+) and prolonged action of high temperatures (100°C) does not yield electrochemically active thermal destruction products.

Keywords

sulfolane lithium salts electrolyte solutions thermal stability electrochemical stability lithium batteries lithium-ion batteries 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aifantis, K.E., Hackney, S.A., and Kumar, R.V., High Energy Density Lithium Batteries, Weinheim: Wiley-VCH, 2010.CrossRefGoogle Scholar
  2. 2.
    Xu, K., Chem. Rev., 2004, vol. 104, no. 10, pp. 4303–4417.CrossRefGoogle Scholar
  3. 3.
    Xu, K., Chem. Rev., 2014, vol. 114, pp. 11503–11618.CrossRefGoogle Scholar
  4. 4.
    Jow, T.R., Xu, K., Borodin, O., Ue, M., Electrolytes for Lithium and Lithium–Ion Batteries, New York: Springer, 2014.CrossRefGoogle Scholar
  5. 5.
    Semenova, I.V., Florianovich, G.M., and Khoroshilov, A.V., Korroziya i zashchita ot korrozii (Corrosion and Corrosion Protection), Moscow: Fizmatlit, 2002.Google Scholar
  6. 6.
    Kozen, A.C., Lin, C.-F., Pearse, A.J., Schroeder, M.A., Han, X., Hu, L., Lee, S.-B., Rubloff, G.W., and Noked, M., ACS Nano, 2015, vol. 9, no. 6, pp. 5884–5892.CrossRefGoogle Scholar
  7. 7.
    Botte, G.G. and Bauer, T.J., J. Power Sources, 2003, vols. 119–121, pp. 815–820.CrossRefGoogle Scholar
  8. 8.
    Ravdel, B., Abraham, K.M., Gitzendanner, R., DiCarlo, J., Lucht, B., and Campion, C., J. Power Sources, 2003, vols. 119–121, pp. 805–810.Google Scholar
  9. 9.
    Kedrinskii, I.A. and Yakovlev, V.G., Li–ionnye akkumulyatory (Li-Ion Batteries), Krasnoyarsk: IPK Platina, 2002.Google Scholar
  10. 10.
    Kolosnitsyn, V.S., Karaseva, E.V., Shakirova, N.V., Kuz’mina, E.V., Ivanov, A.L., and Amine va, N.A., Bashkir. Khim. Zh., 2007, vol. 14, no. 1, pp. 65–70.Google Scholar
  11. 11.
    Xu, W., Wang, J., Ding, F., Chen, X., Nasybulin, E., Zhang, Y., and Zhang, J.-G., Energy Environ. Sci., 2014, vol. 7, pp. 513–537.CrossRefGoogle Scholar
  12. 12.
    Younesi, R., Veith, G.M, Johansson, P., Edstro, K., and Veggea, T., Energy Environ. Sci., 2015, vol. 8, pp. 1905–1922.CrossRefGoogle Scholar
  13. 13.
    Handel, P., Fauler, G., Kapper, K., Schmuck, M., Stangl, C., Fischer, R., Uhlig, F., and Koller, S., J. Power Sources, 2014, vol. 267, pp. 255–259.CrossRefGoogle Scholar
  14. 14.
    Shao, N., Sun, X.G., Dai, S., and Jiang, D., Phys. Chem. B, 2011, vol. 115, pp. 12120–12125.CrossRefGoogle Scholar
  15. 15.
    Wu, F., Zhou, H., Bai, Y., Wang, H., and Wu, C., ACS Appl. Mater. Interfaces, 2015, vol. 7, no. 27, pp. 15098–15107.CrossRefGoogle Scholar
  16. 16.
    Kolosnitsyn, V.S., Sheina, L.V., and Mochalov, S.E., Russ. J. Electrochem., 2008, vol. 44, pp. 575–578.CrossRefGoogle Scholar
  17. 17.
    Lide David, R., Handbook of Chemistry and Physics, 85th ed., New York: CRC Press LLC, 2005.Google Scholar
  18. 18.
    Aurbach, D., Nonaqueous Electrochemistry, New York: Marsel Dekker, Ink., 1999.CrossRefGoogle Scholar
  19. 19.
    Kazitsyna, L.A. and Kupletskaya, N.B., Primenenie UF-, IK-, YaMR-i mass-spektroskopii v organicheskoi khimii (Application of UV, IR, NMR, and Mass Spectroscopy in Organic Chemistry), Moscow: Mosk. Univ., 1979.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • L. V. Sheina
    • 1
  • E. V. Kuz’mina
    • 1
  • E. V. Karaseva
    • 1
  • A. G. Gallyamov
    • 2
  • T. R. Prosochkina
    • 2
  • V. S. Kolosnitsyn
    • 2
  1. 1.Ufa Institute of Chemistry, Ufa Federal Research CenterRussian Academy of SciencesUfa, BashkortostanRussia
  2. 2.Ufa State Petroleum Technical UniversityUfa, BashkortostanRussia

Personalised recommendations