Advertisement

Russian Journal of Applied Chemistry

, Volume 91, Issue 9, pp 1393–1411 | Cite as

Preparation and Use of Chemically Modified Noble Metal Nanoparticles

  • A. Yu. Olenin
  • G. V. Lisichkin
Reviews
  • 10 Downloads

Abstract

Papers dealing with chemical modification of the surface of noble metal nanoparticles and their use in analytical and bioanalytical chemistry, pharmacology, etc., are analyzed. Grafting of a layer of preset chemical composition on the nanoparticle surface allows preparation of functional materials combining the properties of the metal core (surface plasmon resonance, enhancement of fluorescence and nonelastic scattering) and shell (selective interaction with components of the surrounding medium). Combination of these properties opens wide prospects for using the modified nanoparticles in various branches of science and engineering, primary in chemical and biochemical analysis, and also in pharmacology.

Keywords

noble metal nanoparticles chemical modification of the surface functional materials chemical analysis biochemical analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Faraday, M., Phil. Trans. Roy. Soc., Ser. A, 1857, vol. 147, pp. 145–181.CrossRefGoogle Scholar
  2. 2.
    Daniel, M.-C. and Astruc, D., Chem. Rev., 2004, vol. 104, no. 1, pp. 293–346.CrossRefPubMedGoogle Scholar
  3. 3.
    Nath, S., Jana, S., Pradhan, M., and Pal, T., J. Colloid. Interface Sci., 2010, vol. 341, pp. 333–352.CrossRefPubMedGoogle Scholar
  4. 4.
    Sardar, R., Funston, A.M., Mulvaney, P., and Murray, R.W., Langmuir, 2009, vol. 25, no. 24, pp. 13840–13851.CrossRefPubMedGoogle Scholar
  5. 5.
    Sau, T.K. and Rogach, A.L., Adv. Mater., 2010, vol. 22, no. 16, pp. 1781–1804.CrossRefPubMedGoogle Scholar
  6. 6.
    Jin, R., Zeng, C., Zhou, M., and Chen, Y., Chem. Rev., 2016, vol. 116, no. 18, pp. 10346–10413.CrossRefPubMedGoogle Scholar
  7. 7.
    Rafique, M., Shaikh, A.J., Rasheed, R., Tahir, M.B., Faiq Bakhat, H., Rafique, M.S., and Rabbani, F., Nano, 2017, vol. 12, no. 4, paper 1750043.Google Scholar
  8. 8.
    Metal Nanoparticles in Pharma, Rai, M. and Shegokar, R., Eds., Springer, 2017.Google Scholar
  9. 9.
    Zhang, D., Gökce, B., and Barcikowski, S., Chem. Rev., 2017, vol. 117, no. 5, pp. 3990–4103.CrossRefPubMedGoogle Scholar
  10. 10.
    Kotov, Yu.A., J. Nanopart. Res., 2003, vol. 5, nos. 5–6, pp. 539–550.CrossRefGoogle Scholar
  11. 11.
    Yun, G.S., Bac, L.H., Kim, J.S., Kwon, Y.S., Choi, H.S., and Kim, J.C., J. Alloys Compd., 2011, vol. 509, suppl. 1, pp. S348–S352.Google Scholar
  12. 12.
    Murzakaev, A.M., Phys. Met. Metallogr., 2017, vol. 118, no. 5, pp. 459–465.CrossRefGoogle Scholar
  13. 13.
    Olenin, A.Yu., Leenson, I.A., and Lisichkin, G.V., Direct Synthesis of Metal Complexes, Kharisov, B.I., Ed., Amsterdam: Elsevier, 2018, pp. 143–179.CrossRefGoogle Scholar
  14. 14.
    Bellina, B., Compagnon, I., Bertorelle, F., Broyer, M., Antoine, R., Dugourd, P., Gell, L., Kulesza, A., Mitrić, R., and Bonačić-Koutecký, V., J. Phys. Chem. C, 2011, vol. 115, no. 50, pp. 24549–24554.CrossRefGoogle Scholar
  15. 15.
    Zaheer, Z. and Aazam, E.S., J. Mol. Liq., 2017, vol. 242, pp. 1035–1041.CrossRefGoogle Scholar
  16. 16.
    Khimiya privitykh poverkhnostnykh soedinenii (Chemistry of Grafted Surface Compounds), Lisichkin, G.V., Ed., Moscow: Fizmatlit, 2003.Google Scholar
  17. 17.
    Modifitsirovannye kremnezemy v sorbtsii, katalize i khromatografii (Modified Silicas in Sorption, Catalysis, and Chromatography), Lisichkin, G.V., Ed., Moscow: Khimiya, 1986.Google Scholar
  18. 18.
    Mingalev, P.G. and Lisichkin, G.V., Russ. Chem. Rev., 2006, vol. 75, no. 6, pp. 541–558.CrossRefGoogle Scholar
  19. 19.
    Ravindran, A., Dhas, S.P., Chandrasekaran, N., and Mukherjee, A., J. Exp. Nanosci., 2013, vol. 8, no. 4, pp. 589–595.CrossRefGoogle Scholar
  20. 20.
    Nidy, M., Umadevi, M., and Rajkumar, B.J.M., Spectrochim. Acta, Part A, 2014, vol. 133, pp. 265–271.CrossRefGoogle Scholar
  21. 21.
    Shrivas, K. and Wu, H.-F., Rapid Commun. Mass Spectrom., 2008, vol. 22, no. 18, pp. 2863–2872.CrossRefPubMedGoogle Scholar
  22. 22.
    Huang, T., Nallathamby, P.D., Gillet, D., and Xu, X.-H.N., Anal. Chem., 2007, vol. 79, no. 20, pp. 7708–7718.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Kalaivani, G., Sivanesan, A., Kannan, A., Narayanan, N.S.V., Kaminska, A., and Sevvel, R., Langmuir, 2012, vol. 28, no. 40, pp. 14357–14363.CrossRefPubMedGoogle Scholar
  24. 24.
    Bhamore, J.R., Ganguly, P., and Kailasa, S.K., Sens. Actuat. B, 2016, vol. 233, pp. 486–495.CrossRefGoogle Scholar
  25. 25.
    Koval’chuk, E.P., Ogenko, V.M., Reshetnyak, O.V., Pereviznyk, O.B., Davydenko, N., and Marchuk, I.E., Electrochim. Acta, 2010, vol. 55, pp. 5154–5162.CrossRefGoogle Scholar
  26. 26.
    Noh, K.-C., Nam, Y.-S., Lee, H.-J., and Lee, K.-B., Analyst, 2015, vol. 140, no. 24, pp. 8209–8216.CrossRefPubMedGoogle Scholar
  27. 27.
    Ma, S., He, J., Guo, M., Sun, X., and Zheng, M., RSC Adv., 2016, vol. 6, no. 108, pp. 106608–106614.CrossRefGoogle Scholar
  28. 28.
    Porter, L.A., Jr., Ji, D., Westcott, S.L., Graupe, M., Czernuszewicz, R.S., Halas, N.J., and Lee, T.R., Langmuir, 1998, vol. 14, no. 26, pp. 7378–7386.CrossRefGoogle Scholar
  29. 29.
    Lee, J.-S., Lytton-Jean, A.K.R., Hurst, S.J., and Mirkin, C.A., Nano Lett., 2007, vol. 7, no. 7, pp. 2112–2115.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Ly, N.H., Nguyen, T.D., Bui, T.L., Lee, S., Choo, J., and Joo, S.-W., Colloids Surf. A, 2017, vol. 518, pp. 295–303.CrossRefGoogle Scholar
  31. 31.
    Su, D., Yang, X., Xia, Q., Zhang, Q., Chai, F., Wang, C., and Qu, F., Nanotechnology, 2014, vol. 25, no. 35, paper 355702.Google Scholar
  32. 32.
    Patil, V., Mayya, K.S., Pradhan, S.D., and Sastry, M., J. Am. Chem. Soc., 1997, vol. 119, no. 39, pp. 9281–9282.CrossRefGoogle Scholar
  33. 33.
    Mehta, V.N., Mungara, A.K., and Kailasa, S.K., Anal. Meth., 2013, vol. 5, no. 7, pp. 1818–1822.CrossRefGoogle Scholar
  34. 34.
    Rohit, J.V. and Kailasa, S.K., Anal. Meth., 2014, vol. 6, no. 15, pp. 5934–5941.CrossRefGoogle Scholar
  35. 35.
    Maduraiveeran, G. and Ramaraj, R., Anal. Meth., 2011, vol. 8, no. 44, pp. 7966–7971.CrossRefGoogle Scholar
  36. 36.
    Oh, E., Susumu, K., Goswami, R., and Mattoussi, H., Langmuir, 2010, vol. 26, no. 10, pp. 7604–7613.CrossRefPubMedGoogle Scholar
  37. 37.
    Shahrivari, S., Faridbod, F., and Ganjali, M.R., Spectrochim. Acta A, 2018, vol. 191, pp. 189–194.CrossRefGoogle Scholar
  38. 38.
    Sharma, J., Mahima, S., Kakade, B.A., Pasricha, R., Mandale, A.B., and Vijayamohanan, K., J. Phys. Chem. B, 2004, vol. 108, no. 35, pp. 13280–13286.CrossRefGoogle Scholar
  39. 39.
    Ivanov, M.R., Bednar, H.R., and Haes, A.J., ACS Nano, 2009, vol. 3, no. 2, pp. 386–394.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Sankoh, S., Thammakhet, C., Numnuam, A., Limbut, W., Kanatharana, P., and Thavarungkul, P., Biosens. Bioelectron., 2016, vol. 85, pp. 743–750.CrossRefPubMedGoogle Scholar
  41. 41.
    Lin, Y.-W., Huang, C.-C., and Chang, H.-T., Analyst, 2011, vol. 136, no. 5, pp. 863–871.CrossRefPubMedGoogle Scholar
  42. 42.
    Liao, Y.-J., Shiang, Y.-C., Huang, C.-C., and Chang, H.-T., Langmuir, 2012, vol. 28, no. 24, pp. 8944–8951.CrossRefPubMedGoogle Scholar
  43. 43.
    Comby, S. and Gunnlaugsson, T., ACS Nano, 2011, vol. 5, no. 9, pp. 7184–7197.CrossRefPubMedGoogle Scholar
  44. 44.
    Chen, X., Ye, Q., Ma, D., Chen, J., Wang, Y., Yang, H., Xie, S., Yu, R., and Peng, Y., J. Luminescence, 2018, vol. 195, pp. 348–355.CrossRefGoogle Scholar
  45. 45.
    Chen, L., Lou, T., Yu, C., Kang, Q., and Chen, L., Analyst, 2011, vol. 136, no. 22, pp. 4770–4773.CrossRefPubMedGoogle Scholar
  46. 46.
    Masson, J.-F. and Yockell-Leliè vre, H., J. Chem. Educ., 2014, vol. 91, no. 10, pp. 1557–1562.CrossRefGoogle Scholar
  47. 47.
    Zhang, X., Kong, X., Fan, W., and Du, X., Langmuir, 2011, vol. 27, no. 10, pp. 6504–6510.CrossRefPubMedGoogle Scholar
  48. 48.
    Fan, C., He, S., Liu, G., Wang, L., and Song, S., Sensors, 2012, vol. 12, no. 7, pp. 9467–9475.CrossRefPubMedGoogle Scholar
  49. 49.
    Rafati, A., ter Veen, R., and Castner, D.G., Surf. Interface Anal., 2013, vol. 45, nos. 11–12, pp. 1737–1741.CrossRefGoogle Scholar
  50. 50.
    Yin, H., Deodhar, T.J., Chen, M., Lu, Y., Hu, J.J., and Xiong, D., Anal. Meth., 2017, vol. 9, no. 4, pp. 600–608.CrossRefGoogle Scholar
  51. 51.
    Massue, J., Quinn, S.J., and Gunnlaugsson, T., J. Am. Chem. Soc., 2008, vol. 130, no. 22, pp. 6900–6901.CrossRefPubMedGoogle Scholar
  52. 52.
    Wangoo, N., Bhasin, K.K., Mehta, S.K., and Suri, C.R., J. Colloid Interface Sci., 2008, vol. 323, no. 2, pp. 247–254.CrossRefPubMedGoogle Scholar
  53. 53.
    Rohit, J.V. and Kailasa, S.K., J. Nanopart. Res., 2014, vol. 16, no. 11, paper 2585.Google Scholar
  54. 54.
    Shem, P.M., Sardar, R., and Shumaker-Parry, J.S., Langmuir, 2009, vol. 25, no. 23, pp. 13279–13283.CrossRefPubMedGoogle Scholar
  55. 55.
    Wu, S.-P., Chen, Y.-P., and Sung, Y.-M., Analyst, 2011, vol. 136, no. 9, pp. 1887–1891.CrossRefPubMedGoogle Scholar
  56. 56.
    Carlini, L., Fasolato, C., Postorino, P., Fratoddi, I., Venditti, I., Testa, G., and Battocchio, C., Colloids Surf. A, 2017, vol. 532, pp. 183–188.CrossRefGoogle Scholar
  57. 57.
    Chen, X., Cheng, X., and Justin, J., Analyst, 2012, vol. 137, no. 10, pp. 2338–2343.CrossRefPubMedGoogle Scholar
  58. 58.
    Le Guével, X., Wang, F.Y., Stranik, O., Nooney, R., Gubala, V., McDonagh, C., and MacCraith, B.D., J. Phys. Chem. C, 2009, vol. 113, no. 37, pp. 16380–16386.CrossRefGoogle Scholar
  59. 59.
    Park, J.-W. and Shumaker-Parry, J.S., ACS Nano, 2015, vol. 9, no. 2, pp. 1665–1682.CrossRefPubMedGoogle Scholar
  60. 60.
    Kang, L., Xu, P., Chen, D., Zhang, B., Du, Y., Han, X., Li, Q., and Wang, H.-L., J. Phys. Chem. C, 2013, vol. 117, no. 19, pp. 10007–10012.CrossRefGoogle Scholar
  61. 61.
    Lista, M., Liu, D.Z., and Mulvaney, P., Langmuir, 2014, vol. 30, no. 8, pp. 1932–1938.CrossRefPubMedGoogle Scholar
  62. 62.
    Zhu, T., Vasilev, K., Kreiter, M., Mittler, S., and Knoll, W., Langmuir, 2003, vol. 19, no. 22, pp. 9518–9525.CrossRefGoogle Scholar
  63. 63.
    Shon, Y.-S. and Cutler, E., Langmuir, 2004, vol. 20, no. 16, pp. 6626–6630.CrossRefPubMedGoogle Scholar
  64. 64.
    Kisukuri, C.M., Macedo, A., Oliveira, C.C.S., Camargo, P.H.C., and Andrade, L.H., Langmuir, 2013, vol. 29, no. 12, pp. 15974–15980.CrossRefPubMedGoogle Scholar
  65. 65.
    Shan, W.Q., Jian, J., Hong, F.J., and Cong, S.J., Sci. Chin. Ser. B, 2007, vol. 50, no. 3, pp. 418–424.CrossRefGoogle Scholar
  66. 66.
    Hassan, M.M., ChemistrySelect, 2017, vol. 2, no. 1, pp. 504–512.CrossRefGoogle Scholar
  67. 67.
    McMahon, J.M. and Emory, S.R., Langmuir, 2007, vol. 23, no. 3, pp. 1414–1418.CrossRefPubMedGoogle Scholar
  68. 68.
    Pramod, P., Sudeep, P.K., Thomas, K.G., and Kamat, P.V., J. Phys. Chem. B, 2006, vol. 110, no. 42, pp. 20737–20741.CrossRefPubMedGoogle Scholar
  69. 69.
    Johnson, S.R., Evans, S.D., and Brydson, R., Langmuir, 1998, vol. 14, no. 23, pp. 6639–6647.CrossRefGoogle Scholar
  70. 70.
    Lisichkin, G.V. and Olenin, A.Yu., Russ. Chem. Bull., 2018, vol. 67, no. 6, pp. 949–957.CrossRefGoogle Scholar
  71. 71.
    Hu, Y., Yang, H., Zhang, Y., Hou, Z., Wang, X., Qiao, Y., Li, H., Feng, B., and Huang, Q., Catal. Commun., 2009, vol. 10, no. 14, pp. 1903–1907.CrossRefGoogle Scholar
  72. 72.
    Huang, W., Chen, S., Liu, Y., Fu, H., and Wu, G., Nanotechnology, 2011, vol. 22, no. 2, paper 025602.Google Scholar
  73. 73.
    Šmejkal, P., Pfleger, J., and Vlčková, B., Appl. Phys. A, 2010, vol. 101, pp. 37–40.CrossRefGoogle Scholar
  74. 74.
    Yamamoto, H., Kozawa, T., Tagawa, S., Naito, M., Marignier, J.-L., Mostafavi, M., and Belloni, J., Radiat. Phys. Chem., 2013, vol. 91, pp. 148–155.CrossRefGoogle Scholar
  75. 75.
    Ershov, B.G. and Abkhalimov, E.A., Colloid J., 2006, vol. 68, no. 4, pp. 417–424.CrossRefGoogle Scholar
  76. 76.
    Evangelisti, C., Panziera, N., D’Alessio, A., Bertinetti, L., Botavina, M., and Vitulli, G., J. Catal., 2010, vol. 272, no. 2, pp. 246–252.CrossRefGoogle Scholar
  77. 77.
    Cárdenas, T., González, G.M., Salgado, C.E., Morales, J., and Soto, Z.H., Mater. Res. Bull., 1999, vol. 34, nos. 12–13, pp. 1911–1919.CrossRefGoogle Scholar
  78. 78.
    Matthiesen, J.E., Jose, D., Sorensen, C.M., and Klabunde, K.J., J. Am. Chem. Soc., 2012, vol. 134, no. 22, pp. 9376–9379.CrossRefPubMedGoogle Scholar
  79. 79.
    Olenin, A.Yu. and Lisichkin, G.V., Russ. Chem. Rev., 2011, vol. 80, no. 7, pp. 605–630.CrossRefGoogle Scholar
  80. 80.
    Smetana, A.B., Klabunde, K.J., and Sorensen, C.M., J. Colloid Interface Sci., 2005, vol. 284, no. 2, pp. 521–526.CrossRefPubMedGoogle Scholar
  81. 81.
    Bhaskar, S.P., Vijayan, M., and Jagirdar, B.R., J. Phys. Chem. C, 2014, vol. 118, no. 31, pp. 18214–18225.CrossRefGoogle Scholar
  82. 82.
    Dey, G.R. and Kishore, K., Radiat. Phys. Chem., 2005, vol. 72, no. 5, pp. 565–573.CrossRefGoogle Scholar
  83. 83.
    Praharaj, S., Ghosh, S.K., Nath, S., Kundu, S., Panigrahi, S., Basu, S., and Pal, T., J. Phys. Chem. B, 2005, vol. 109, no. 27, pp. 13166–13174.CrossRefPubMedGoogle Scholar
  84. 84.
    Ganguly, M., Pal, A., and Pal, T., J. Phys. Chem. C, 2012, vol. 116, no. 16, pp. 9265–9273.CrossRefGoogle Scholar
  85. 85.
    Ghosh, S.K., Nath, S., Kundu, S., Esumi, V, and Pal, T., J. Phys. Chem. B, 2004, vol. 108, no. 37, pp. 13963–13971.CrossRefGoogle Scholar
  86. 86.
    Wang, W., Efrima, S., and Regev, O., Langmuir, 1998, vol. 14, no. 3, pp. 602–610.CrossRefGoogle Scholar
  87. 87.
    Olenin, A.Yu., Krutyakov, Yu.A., Kudrinskii, A.A., and Lisichkin, G.V., Colloid J., 2008, vol. 70, no. 1, pp. 71–76.CrossRefGoogle Scholar
  88. 88.
    Sun, Y., Jose, D., Sorensen, C., and Klabunde, K.J., Nanomaterials, 2013, vol. 3, no. 3, pp. 370–392.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Priyadarshini, E. and Pradhan, N., Sens. Actuat. B, 2017, vol. 238, pp. 888–902.CrossRefGoogle Scholar
  90. 90.
    Han, J., Wang, M., Hu, Y., Zhou, C., and Guo, R., Prog. Polym. Sci., 2017, vol. 70, pp. 52–91.CrossRefGoogle Scholar
  91. 91.
    Gawande, M.B., Goswami, A., Felpin, F.-X., Asefa, T., Huang, X., Silva, R., Zou, X., Zboril, R., and Varma, R.S., Chem. Rev., 2016, vol. 116, no. 6, pp. 3722–3811.CrossRefPubMedGoogle Scholar
  92. 92.
    Narayanan, R. and El-Sayed, M.A., J. Phys. Chem. B, 2005, vol. 109, no. 26, pp. 12663–12676.CrossRefPubMedGoogle Scholar
  93. 93.
    Prati, L. and Villa, A., Acc. Chem. Res., 2014, vol. 47, no. 3, pp. 855–863.CrossRefPubMedGoogle Scholar
  94. 94.
    De Araújo, C.B., Kassab, L.R.P., Dominguez, С.T., Ribeiro, S.J.L, Gomes, A.S.L., and Reyna, A.S., J. Luminescence, 2016, vol. 169, pp. 492–496.CrossRefGoogle Scholar
  95. 95.
    Arvizo, R.R., Bhattacharyya, S., Kudgus, R.A., Giri, K., Bhattacharya, R., and Mukherjee, P., Chem. Soc. Rev., 2012, vol. 41, no. 7, pp. 2943–2970.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Mannelli, I. and Marco, M.-P., Anal. Bioanal. Chem., 2010, vol. 398, no. 6, pp. 2451–2469.CrossRefPubMedGoogle Scholar
  97. 97.
    Singh, H.P., Kaur, A., Kaur, I., Buttar, H.S., and Bhullar, S.K., Biomed. Rev., 2015, vol. 26, pp. 23–36.CrossRefGoogle Scholar
  98. 98.
    Ruedas-Rama, M.J., Walters, J.D., Orte, A., and Hall, E.A.H., Anal. Chim. Acta, 2012, vol. 751, pp. 1–23.CrossRefPubMedGoogle Scholar
  99. 99.
    Penn, S.G., Lin Hey, and Natan, M.J., Curr. Opin. Chem. Biol., 2003, vol. 7, no. 5, pp. 609–615.CrossRefGoogle Scholar
  100. 100.
    Tomar, A. and Garg, A., Glob. J. Pharm., 2013, vol. 7, no. 1, pp. 34–38.Google Scholar
  101. 101.
    Oliveira, E., Núñez, C., Santos, H.M., Fernández-Lodeiro, J., Fernández-Lodeiro, A., Capelo, J.L., and Lodeiro, C., Sens. Actuat. B, 2015, vol. 212, pp. 297–328.CrossRefGoogle Scholar
  102. 102.
    De Dios, A.S. and Díaz-García, M.E., Anal. Chim. Acta, 2010, vol. 666, no. 1–2, pp. 1–22.CrossRefPubMedGoogle Scholar
  103. 103.
    Dykman, L. and Khlebtsov, N., Chem. Soc. Rev., 2012, vol. 41, no. 6, pp. 2256–2282.CrossRefPubMedGoogle Scholar
  104. 104.
    Chen, Y., Xianyu, Y., and Jiang, X., Acc. Chem. Res., 2017, vol. 50, no. 2, pp. 310–319.CrossRefPubMedGoogle Scholar
  105. 105.
    Csáki, A., Thiele, M., Jatschka, J., Dathe, A., Zopf, D., Stranik, O., and Fritzsche, W., Eng. Life Sci., 2015, vol. 15, no. 3, pp. 266–275.CrossRefGoogle Scholar
  106. 106.
    Fukumori, Y. and Ichikawa, H., Adv. Powder Technol., 2006, vol. 17, no. 1, pp. 1–28.CrossRefGoogle Scholar
  107. 107.
    Burgess, R.W. and Keast, V.J., J. Phys. Chem. C, 2014, vol. 118, no. 6, pp. 3194–3201.CrossRefGoogle Scholar
  108. 108.
    Ravindran, A., Chandran, P., and Khan, S.S., Colloids Surf. B, 2013, vol. 105, pp. 342–352.CrossRefGoogle Scholar
  109. 109.
    Thanh, N.T.K. and Green, L.A.W., Nano Today, 2010, vol. 5, no. 3, pp. 213–230.CrossRefGoogle Scholar
  110. 110.
    Sapsford, K.E., Algar, W.R., Berti, L., Gemmill, K.B., Casey, B.J., Oh, E., Stewart, M.H., and Medintz, I.L., Chem. Rev., 2013, vol. 113, no. 3, pp. 1904–2074.CrossRefPubMedGoogle Scholar
  111. 111.
    Khlebtsov, N.G., Melnikov, A.G., Dykman, L.A., and Bogatyrev, V.A., NATO Sci. Ser. II. Math. Phys. Chem., 2004, vol. 161, pp. 265–308.CrossRefGoogle Scholar
  112. 112.
    Xu, X., Wang, Y., Wang, H., Su, H., Mao, X., Jiang, L., Liu, M., Sun, D., and Hou, S., J. Mol. Liq., 2016, vol. 220, pp. 14–20.CrossRefGoogle Scholar
  113. 113.
    Johnston, H.J., Hutchison, G., Christensen, F.M., Peters, S., Hankin, S., and Stone, V., Crit. Rev. Toxicol., 2010, vol. 40, no. 4, pp. 328–346.CrossRefPubMedGoogle Scholar
  114. 114.
    Dykman, L.A. and Khlebtsov, N.G., Acta Naturae, 2011, vol. 3, no. 2, pp. 34–55.PubMedPubMedCentralGoogle Scholar
  115. 115.
    Hollinger, M.A., Crit. Rev. Toxicol., 1996, vol. 26, no. 2, pp. 255–260.CrossRefPubMedGoogle Scholar
  116. 116.
    Zhang, X., Chibli, H., Kong, D., and Nadeau, J., Nanotechnology, 2012, vol. 23, no. 27, p. 275103.CrossRefPubMedGoogle Scholar
  117. 117.
    Haase, A., Mantion, A., Graf, P., Plendl, J., Thuenemann, A.F., Meier, W., Taubert, A., and Luch, A., Arch. Toxicol., 2012, vol. 86, no. 7, pp. 1089–1098.CrossRefPubMedGoogle Scholar
  118. 118.
    Maxwell, D.J., Taylor, J.R., and Nie, S., J. Am. Chem. Soc., 2002, vol. 124, no. 32, pp. 9606–9612.CrossRefPubMedGoogle Scholar
  119. 119.
    Lin He, Musick, M.D., Nicewarner, S.R., Salinas, F.G., Benkovic, S.J., Natan, M.J., and Keating, C.D., J. Am. Chem. Soc., 2000, vol. 122, no. 38, pp. 9071–9077.CrossRefGoogle Scholar
  120. 120.
    Pumera, M., Castaneda, M.T., Pividori, M.I., Eritja, R., Merkoci, A., and Alegret, S., Langmuir, 2005, vol. 21, no. 21, pp. 9625–9629.CrossRefPubMedGoogle Scholar
  121. 121.
    Vertelov, G.K., Krutyakov, Yu.A., Efremenkova, O.V., Olenin, A.Yu., and Lisichkin, G.V., Nanotechnology, 2008, vol. 19, no. 35, paper 355707.Google Scholar
  122. 122.
    Mi, F.-L., Wu, S.-J., Zhong, W.-Q., and Huang, C.-Y., Phys. Chem. Chem. Phys., 2015, vol. 17, no. 33, pp. 21243–21253.CrossRefPubMedGoogle Scholar
  123. 123.
    Loukova, G.V., Milov, A.A., Vasiliev, V.P., and Minkin, V.I., Dokl. Phys. Chem., 2016, vol. 470, no. 3, pp. 133–136.CrossRefGoogle Scholar
  124. 124.
    Song, J., Wu, F., Wan, Y., and Ma, L., Food Contr., 2015, vol. 50, pp. 356–361.CrossRefGoogle Scholar
  125. 125.
    Song, J., Wu, F., Wan, Y., and Ma, L.-H., Microchim. Acta, 2014, vol. 181, nos. 11–12, pp. 1267–1274.CrossRefGoogle Scholar
  126. 126.
    Ma, Y., Niu, H., Zhang, X., and Cai, Y., Analyst, 2011, vol. 136, no. 20, pp. 4192–4196.CrossRefPubMedGoogle Scholar
  127. 127.
    Ma, Q., Song, J., Zhang, S., Wang, M., Guo, Y., and Dong, C., Colloids Surf. B, 2016, vol. 148, pp. 66–72.CrossRefGoogle Scholar
  128. 128.
    Wang, S., Li, W., Chang, K., Liu, J., Guo, Q., Sun, H., Jiang, M., Zhang, H., Chen, J., and Hu, J., PLoS ONE, 2017, vol. 12, no. 9, paper e0185530.Google Scholar
  129. 129.
    Derayea, S.M., Omar, M.A., Hammad, M.A., and Hassan, Y.F., J. Appl. Pharm. Sci., 2017, vol. 7, no. 2, pp. 16–24.Google Scholar
  130. 130.
    Liu, C., Li, V., and Xu, C., Microchim. Acta, 2014, vol. 181, nos. 11–12, pp. 1407–1413.CrossRefGoogle Scholar
  131. 131.
    Zhang, L., Xu, C., Liu, C., and Li, B., Anal. Chim. Acta, 2014, vol. 809, pp. 123–127.CrossRefPubMedGoogle Scholar
  132. 132.
    Su, H., Zheng, Q., and Li, H., J. Mater. Chem., 2012, vol. 22, no. 14, pp. 6546–6548.CrossRefGoogle Scholar
  133. 133.
    Zhang, L., Xu, C., Song, G., and Li, B., RSC Adv., 2015, vol. 5, no. 34, pp. 27003–27008.CrossRefGoogle Scholar
  134. 134.
    Hone, D.C., Haines, A.H., and Russell, D.A., Langmuir, 2003, vol. 19, no. 17, pp. 7141–7144.CrossRefGoogle Scholar
  135. 135.
    Li, H., Chen, C.-Y., Wei, X., Qiang, W., Li, Z., Cheng, Q., and Xu, D., Anal. Chem., 2012, vol. 84, no. 20, pp. 8656–8662.CrossRefPubMedGoogle Scholar
  136. 136.
    Liu, M., Wang, Z., Zong, S., Zhang, R., Zhu, D., Xu, S., Wang, C., and Cui, Y., Anal. Bioanal. Chem., 2013, vol. 405, no. 18, pp. 6131–6136.CrossRefPubMedGoogle Scholar
  137. 137.
    Liu, B. and Liu, J., Anal. Meth., 2017, vol. 9, no. 18, pp. 2633–2643.CrossRefGoogle Scholar
  138. 138.
    Duy, J., Connell, L.B., Eck, W., Collins, S.D., and Smith, R.L., J. Nanopart. Res., 2010, vol. 12, no. 7, pp. 2363–2369.CrossRefGoogle Scholar
  139. 139.
    Bakshi, M.S., Possmayer, F., and Petersen, N.O., J. Phys. Chem. C, 2007, vol. 111, no. 38, pp. 14113–14124.CrossRefGoogle Scholar
  140. 140.
    Joshi, D. and Soni, R.K., J. Nanopart. Res., 2015, vol. 17, no. 5, paper 210.Google Scholar
  141. 141.
    Yan, X., Blacklock, J., Li, J., and Möhwald, H., ACS Nano, 2012, vol. 6, no. 1, pp. 111–117.CrossRefPubMedGoogle Scholar
  142. 142.
    Tomuleasa, C., Soritau, O., Orza, A., Dudea, M., Petrushev, B., Mosteanu, O., Susman, S., Florea, A., Pall, E., Aldea, M., Kacso, G., Cristea, V., Berindan-Neagoe, I., and Irimie, A., J. Gastr. Liv. Dis., 2012, vol. 21, no. 2, pp. 187–196.Google Scholar
  143. 143.
    Xie, Y., Wang, X., Han, X., Xue, X., Ji, W., Qi, Z., Liu, J., Zhao, B., and Ozaki, Y., Analyst, 2010, vol. 135, no. 6, pp. 1389–1394.CrossRefPubMedGoogle Scholar
  144. 144.
    Potara, M., Boca, S., Licarete, E., Damert, A., Alupei, M.-C., Chiriac, M.T., Popescu, O., Schmidt, U., and Astilean, S., Nanoscale, 2013, vol. 5, no. 13, pp. 6013–6022.CrossRefPubMedGoogle Scholar
  145. 145.
    Di Carlo, G., Curulli, A., Toro, R.G., Bianchini, C., De Caro, T., Padeletti, G., Zane, D., and Ingo, G.M., Langmuir, 2012, vol. 28, no. 12, pp. 5471–5479.CrossRefPubMedGoogle Scholar
  146. 146.
    Pandit, R., Rai, M., and Santos, C.A., Environ. Chem. Lett., 2017, vol. 15, no. 3, pp. 443–452.CrossRefGoogle Scholar
  147. 147.
    Lin, J.-H., Chang, C.-W., and Tseng, W.-L., Analyst, 2010, vol. 135, no. 1, pp. 104–110.CrossRefPubMedGoogle Scholar
  148. 148.
    Huang, X., Lan, T., Zhang, B., and Ren, J., Analyst, 2012, vol. 137, no. 16, pp. 3659–3666.CrossRefPubMedGoogle Scholar
  149. 149.
    Radhakumary, C. and Sreenivasan, K., Anal. Chem., 2011, vol. 83, no. 7, pp. 2829–2833.CrossRefPubMedGoogle Scholar
  150. 150.
    He, P. and Zhu, X., Mater. Res. Bull., 2008, vol. 43, no. 3, pp. 625–630.CrossRefGoogle Scholar
  151. 151.
    García-Marín, A., Abad, J.M., Ruiz, E., Lorenzo, E., Piqueras, J., and Pau, J.L., Anal. Chem., 2014, vol. 86, no. 10, pp. 4969–4976.CrossRefPubMedGoogle Scholar
  152. 152.
    Li, J.-F., Zhang, Y.-J., Ding, S.-Y., Panneerselvam, R., and Tian, Z.-Q., Chem. Rev., 2017, vol. 117, no. 7, pp. 5002–5069.CrossRefGoogle Scholar
  153. 153.
    Zrimsek, A.B., Chiang, N., Mattei, M., Zaleski, S., McAnally, M.O., Chapman, C.T., Henry, A.-I., Schatz, G.C., and Van Duyne, R.P., Chem. Rev., 2017, vol. 117, no. 11, pp. 7583–7613.CrossRefPubMedGoogle Scholar
  154. 154.
    Eremina, O.E., Semenova, A.A., Sergeeva, E.A., Brazhe, N.A., Maksimov, G.V., Shekhovtsova, T.N., Goodilin, E.A., and Veselova, I.A., Russ. Chem. Rev., 2018, vol. 87, no. 8, pp. 741–770.CrossRefGoogle Scholar
  155. 155.
    Li, Q., Zhang, L., Li, J., and Lu, C., Trends Anal. Chem., 2011, vol. 30, no. 2, pp. 401–413.CrossRefGoogle Scholar
  156. 156.
    Bendicho, C., Bendicho-Lavilla, C., and Lavilla, I., Trends Anal. Chem., 2016, vol. 77, pp. 109–121.CrossRefGoogle Scholar
  157. 157.
    Achyuthan, K.E., Achyuthan, A.M., Brozik, S.M., Dirk, S.M., Lujan, T.R., Romero, J.M., and Harper, J.C., Anal. Sci., 2012, vol. 28, no. 5, pp. 433–438.CrossRefPubMedGoogle Scholar
  158. 158.
    Boken, J., Soni, S.K., and Kumar, D., Crit. Rev. Anal. Chem., 2016, vol. 46, no. 6, pp. 538–561.CrossRefPubMedGoogle Scholar
  159. 159.
    Taranova, N.A., Urusov, A.E., Sadykhov, E.G., Zherdev, A.V., and Dzantiev, B.B., Microchim. Acta, 2017, vol. 184, no. 10, pp. 4189–4195.CrossRefGoogle Scholar
  160. 160.
    Khadzhiev, S.N., Kolesnichenko, N.V., and Ezhova, N.N., Petrol. Chem., 2016, vol. 56, no. 2, pp. 77–95.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations