Advertisement

Russian Journal of Applied Chemistry

, Volume 91, Issue 2, pp 230–234 | Cite as

Composition of Inorganic Components of Oat Husks and Products of Their Chemical and Enzymatic Transformation

  • L. A. Zemnukhova
  • E. A. Skiba
  • V. V. Budaeva
  • A. E. Panasenko
  • N. V. Polyakova
Various Technological Processes
  • 20 Downloads

Abstract

Samples of ash prepared from oat husks and products of their chemical and enzymatic processing in the bacterial nanocellulose production cycle were studied. Their elemental composition and content of the main substance, silicon dioxide, were determined, and the IR spectra and X-ray diffraction patterns were taken. The purest silica was prepared from the dry residue after enzymatic hydrolysis of the product of nitric acid treatment of oat husks, which allows comprehensive use of organic and inorganic components of the vegetable raw material.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gutzow, I., Pascova, R., Jordanov, N., et al., Nucleation Theory and Application, Schmelzer, J. W. P., Ropke, G., and Priezzhev, V. B., Eds., Dubna: JINR, 2011, pp. 95–143.Google Scholar
  2. 2.
    Chukin, G.D., Khimiya poverkhnosti i stroenie dispersnogo kremnezema (Surface Chemistry and Structure of Disperse Silica), Moscow: Printa, 2008.Google Scholar
  3. 3.
    Zemnukhova, L.A., Panasenko, A.E., Tsoi, E.A., et al., Inorg. Mater., 2014, vol. 50, no. 1, pp. 75–81.CrossRefGoogle Scholar
  4. 4.
    Zemnukhova, L.A., Budaeva, V.V., Fedorishcheva, G.A., et al., Khim. Rast. Syr’ya, 2009, no. 1, pp. 147–152.Google Scholar
  5. 5.
    Sun, R.C., Cereal Straw as a Resource for Sustainable Biomaterials and Biofuels: Monograph., Elsevier, 2010.Google Scholar
  6. 6.
    Agrawal, R., Satlewal, A., Gaur, R., et al., Biochem. Eng. J., 2015, vol. 102, pp. 54–61.CrossRefGoogle Scholar
  7. 7.
    Wattanasiriwech, S., Wattanasiriwech, D., and Svasti, J., J. Non-Cryst. Solids, 2010, vol. 356, pp. 1228–1232.CrossRefGoogle Scholar
  8. 8.
    Budaeva, V.V., Skiba, E.A., Baibakova, O.V., et al., Catal. Ind., 2016, vol. 8, no. 1, pp. 81–87.CrossRefGoogle Scholar
  9. 9.
    Skiba, E.A., Budaeva, V.V., Baibakova, O.V., et al., Catal. Ind., 2016, vol. 8, no. 2, pp. 168–175.CrossRefGoogle Scholar
  10. 10.
    Gladysheva, E.K. and Skiba, E.A., Izvestiya Vuzov. Prikladnaya Khimiya i Biotekhnologiya, 2017, vol. 7, no. 1, pp. 140–146.Google Scholar
  11. 11.
    Skiba, E.A., Izvestiya Vuzov. Prikladnaya Khimiya i Biotekhnologiya, 2016, no. 3, pp. 140–142.Google Scholar
  12. 12.
    Zemnukhova, L.A., Panasenko, A.E., Artem’yanov, A.P., and Tsoy, E.A., Bioresources, 2015, vol. 10, pp. 3713–3723.CrossRefGoogle Scholar
  13. 13.
    Wang, W., Martin, J.C., Huang, R., et al., Royal Soc. Chem. Adv., 2012, vol. 2, pp. 9036–9041.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • L. A. Zemnukhova
    • 1
  • E. A. Skiba
    • 2
  • V. V. Budaeva
    • 2
  • A. E. Panasenko
    • 1
  • N. V. Polyakova
    • 1
  1. 1.Institute of Chemistry, Far East BranchRussian Academy of SciencesVladivostokRussia
  2. 2.Institute for Problems of Chemical and Energetic Technologies, Siberian BranchRussian Academy of SciencesBiisk, Altai kraiRussia

Personalised recommendations