Russian Journal of Applied Chemistry

, Volume 90, Issue 12, pp 1939–1943 | Cite as

Pyrolysis of Methane on Resistive MgO/SiC Catalyst

  • S. S. Sigaeva
  • V. L. Temerev
  • D. A. Shlyapin
  • P. G. Tsyrul’nikov
Catalysis
  • 1 Downloads

Abstract

Dynamics of methane pyrolysis on the MgO/SiC catalyst was examined at different temperatures of the resistive catalyst. The conversion of methane on the MgO/SiC catalyst at 1200°C passes through a minimum (29%) by 60th minute, with the selectivity with respect to acetylene steadily increasing during the whole experiment. The scanning microscopy with EDAX analysis demonstrated that the full carbonization of the MgO/ SiC sample at 1200°C also occurs after 60 min of the experiment. It was found that a carbon coating of layered structure is formed on the catalyst surface in the course of the experiment, with C2 hydrocarbons still present among the pyrolysis products. It was shown that carbon deposits formed on the surface of the MgO/SiC catalyst are catalytically active in the process of acetylene formation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ashpina, O., Khim. Zh., 2009, nos. 6–7, p. 26.Google Scholar
  2. 2.
    Knizhnikov, A.Yu. and Pusenkova, N.N., Problemy i perspektivy ispol’zovaniya neftyanogo poputnogo gaza v Rossii (Problems and Prospects of Application of Associated Gas in Russia), Moscow: WWF Ross. and Inst. Mezhdunar. Ekon. Mir. Otn. Ross. Akad. Nauk, 2009.Google Scholar
  3. 3.
    Arutyunov, V.S. and Krylov, O.V., Okislitel’nye prevrashcheniya metana (Oxidative Transformations of Methane), Moscow: Nauka, 1998.Google Scholar
  4. 4.
    Holmen, A., Catal. Today,. 2009, vol. 142, pp. 2–8.CrossRefGoogle Scholar
  5. 5.
    Ertl, G., Knoezinger, H., Schueth, F., and Weitkamp, J., Handbook of Heterogeneous Catalysis, Wiley, 2008.CrossRefGoogle Scholar
  6. 6.
    Lapidus, A.L., Golubeva, I.A., and Zhagfarov, F.G., Gazokhimiya (Chemical Utilization of Natural Gas), Moscow: TsentrLitNefteGaz. 2008.Google Scholar
  7. 7.
    Kharlamov, V.V., Alipov, N.E., and Konovalov, N.I., Okislitel’nyi piroliz metana do atsetilena (Oxidative Pyrolysis of Methane to Acetylene), Moscow: 2003.Google Scholar
  8. 8.
    Slovetskii, D.I., Petroleum Chem., 2006, vol. 46, no. 5, pp. 295–304.CrossRefGoogle Scholar
  9. 9.
    Fincke, J.R., Anderson, R.P., Hyde, T., et al., Plasma Chem. Plasma Proc., 2002, vol. 22, no. 1, pp. 107–138.CrossRefGoogle Scholar
  10. 10.
    Sun, Qi., Tang, Yo., and Gavalas, G.R., Energy Fuels, 2000, no. 14, pp. 490–494.CrossRefGoogle Scholar
  11. 11.
    Sigaeva, S.S., Likholobov, V.A., and Tsyrul’nikov, P.G., Kinet. Katal., 2013, vol. 54, no. 2, p. 208.CrossRefGoogle Scholar
  12. 12.
    Porsin, A. V., Kulikov, A. V., and Amosov, Yu.I., et al., Fuel Proc. Technol., 2014, vol. 42, pp. 249–267.Google Scholar
  13. 13.
    Sigaeva, S.S., Tsyrul’nikov, P.G., Temerev, V.L., and Borisov, V.A., Katal. Prom–sti, 2015, no. 2, pp. 6–9.Google Scholar
  14. 14.
    Borisov, V.A., Sigaeva, S.S., Tsyrul’nikov, P.G., et al., Kinet. Katal., 2014, vol. 55, no. 3, p. 334.CrossRefGoogle Scholar
  15. 15.
    Sigaeva, S.S., Temerev, V.L., Kuznetsova, N.V., and Tsyrul’nikov, P.G., Katal. Prom–sti, 2017, vol. 17, no. 2, pp. 94–101.Google Scholar
  16. 16.
    Vasil’eva, N.A. and Buyanov, R.A., Khim. Interesakh Ustoich. Razvit., 2004, vol. 12, p. 661.Google Scholar
  17. 17.
    Vasil’eva, N.A. and Uvarov, N.F., Kinet. Katal., 2011, vol. 52, no. 1, pp. 99–105.Google Scholar
  18. 18.
    Likholobov, V.A., Soros. Obrazovat. Zh., 1997, no. 5, pp. 35–42.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • S. S. Sigaeva
    • 1
  • V. L. Temerev
    • 1
  • D. A. Shlyapin
    • 1
  • P. G. Tsyrul’nikov
    • 1
  1. 1.Institute of Hydrocarbons Processing, Siberian BranchRussian Academy of SciencesOmskRussia

Personalised recommendations