Russian Journal of Applied Chemistry

, Volume 90, Issue 12, pp 1908–1917 | Cite as

Study of the Influence Exerted by Zinc Additive on the Structure and Catalytic Properties of Pd/Al2O3 Catalysts for Liquid-Phase Hydrogenation of Acetylene

  • D. V. Glyzdova
  • N. S. Smirnova
  • V. L. Temerev
  • E. V. Khramov
  • T. I. Gulyaeva
  • M. V. Trenikhin
  • D. A. Shlyapin
  • P. G. Tsyrul’nikov
Catalysis
  • 12 Downloads

Abstract

Effect of the phase composition of aluminum oxide [γ- and (δ + θ) phase] and introduction of zinc additives on the catalytic properties of 0.5% Pd/Al2O3 systems in the reaction of liquid-phase hydrogenation of acetylene into ethylene under an elevated pressure in a flow-through mode was studied. An increase in the activity of the Pd catalyst upon modification with zinc is only observed in the case of a system supported by the mixed phase of (δ + θ) aluminum oxide. XAFS spectroscopy was used to find that the increase in the activity and selectivity with respect to ethylene (in the presence of carbon monoxide) on the (0.5% Pd–0.62% Zn)/(δ + θ)-Al2O3 catalyst is correlated with the formation of the PdZn intermetallic compound.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    US Patent 8 445 739V2 (publ. 2013).Google Scholar
  2. 2.
    US Patent 8 410 015V2 (publ. 2013).Google Scholar
  3. 3.
    US Patent 7 208 647V2 (publ. 2007).Google Scholar
  4. 4.
    US Patent 8 460 937V2 (publ. 2013).Google Scholar
  5. 5.
    Temkin, O.N., Atsetilen–khimiya, mekhanizmy reaktsii, tekhnologiya (Acetylene: Chemistry, Reaction Mechanisms, Technology), Moscow: Khimiya, 1991.Google Scholar
  6. 6.
    Borodziński, A. and Bond, G.C., Catal. Rev., 2008, vol. 50, no. 3, pp. 379–469.CrossRefGoogle Scholar
  7. 7.
    Mashkovsky, I.S., Baeva, G.N., Stakheev, A.Y., et al., Mendeleev Commun., 2014, vol. 24, no. 6, pp. 355–357.CrossRefGoogle Scholar
  8. 8.
    Chinayon, S., Mekasuwandumrong, O., Praserthdam, P., et al., Catal. Commun., 2008, vol. 9, no. 14, pp. 2297–2302.CrossRefGoogle Scholar
  9. 9.
    Mashkovsky, I.S., Markov, P.V., Bragina, G.O., et al., Kinet. Catal., 2017, vol. 58, no. 4, pp. 480–491.CrossRefGoogle Scholar
  10. 10.
    Mashkovsky, I.S., Markov, P.V., Bragina, G.O., et al., Kinet. Catal., 2017, vol. 58, no. 4, pp. 471–479.CrossRefGoogle Scholar
  11. 11.
    Tew, M.W., Emerich, H., and van Bokhoven, J.A., J. Phys. Chem., 2011, vol. 115S, no. 17, pp. 8457–8465.Google Scholar
  12. 12.
    Mashkov skii, I.S., Tkachenko, O.P., Baeva, G.N., et al., Kinet. Catal., 2009, vol. 50, no. 5, pp. 768–774.CrossRefGoogle Scholar
  13. 13.
    Niko laev, S.A., Zanaveskin, L.N., Smirnov, V.V., et al., Russ. Chem. Rev., 2009, vol. 78, no. 3, pp. 231–248.CrossRefGoogle Scholar
  14. 14.
    Komeili, S., Ravanchi, M.T., and Taeb, A., Appl. Catal., A, 2015, vol. 502, pp. 287–296.CrossRefGoogle Scholar
  15. 15.
    Komhom, S., Mekasuwandumrong, O., Praserthdam, P., et al., Catal. Commun., 2008, vol. 10, no. 1, pp. 86–91.CrossRefGoogle Scholar
  16. 16.
    Ivanova, A.S., Promyshlennyi kataliz v lektsiyakh (Industrial Catalysis in Lectures), Moscow: Kalvis, 2008, no. 8, pp. 7–62.Google Scholar
  17. 17.
    Komhom, S., Praserthdam, P., Mekasuwandumrong, O., et al., React. Kinet. Catal. Lett., 2008, vol. 94, no. 2, pp. 233–241.CrossRefGoogle Scholar
  18. 18.
    Mironenko, O.O., Temerev, V.L., Smirnova, N.S., et al., Khim. Interesakh Ustoich. Razvit., 2016, vol. 24, pp. 41–47.Google Scholar
  19. 19.
    Afonasenko, T.N., Smirnova, N.S., Temerev, V.L., et al., Kinet. Catal., 2016, vol. 57, no. 4, pp. 490–496.CrossRefGoogle Scholar
  20. 20.
    Trofimova, N.N., Veligzhanin, A.A., Murzin, V.Y., et al., Nanotechnol. Russ., 2013, vol. 8, no. 5, pp. 396–401.CrossRefGoogle Scholar
  21. 21.
    Ravel, B. and Newville, M., J. Synchrotron Radiat., 2005, vol. 12, no. 4, pp. 537–541.CrossRefGoogle Scholar
  22. 22.
    Newville, M., J. Synchrotron Radiat., 2001, vol. 8, no. 2, pp. 322–324.CrossRefGoogle Scholar
  23. 23.
    Kul’ko, E.V., Ivanova, A.S., Litvak, G.S., et al., Kinet. Catal., 2004, vol. 45, no. 5, pp. 714–721.CrossRefGoogle Scholar
  24. 24.
    Yarulin, A.E., Crespo-Quesada, R.M., Egorova, E.V., et al., Kinet. Catal., 2012, vol. 53, no. 2, pp. 253–261.CrossRefGoogle Scholar
  25. 25.
    Childers, D.J., Schweitzer, N.M., Shahari, S.M.K., et al., J. Catal., 2014, vol. 318, pp. 75–84.CrossRefGoogle Scholar
  26. 26.
    Gurrath, M., Kuretzky, T., Boehm, H.P., et al., Carbon, 2000, vol. 38, no. 8, pp. 1241–1255.CrossRefGoogle Scholar
  27. 27.
    Tkachenko, O., Stakheev, A., Kustov, L., et al., Catal. Lett., 2006, vol. 112, no. 3, pp. 155–161.CrossRefGoogle Scholar
  28. 28.
    Zawadzki, M., Miśta, W., and Kępiński, L., Vacuum, 2001, vol. 63, nos. 1–2, pp. 291–296.CrossRefGoogle Scholar
  29. 29.
    Chistyakov, A.V., Gubanov, M.A., Murzin, V.Y., et al., Russ. Chem. Bull., 2014, vol. 63, no. 1, pp. 88–93.CrossRefGoogle Scholar
  30. 30.
    Wanga, Z., Yang, L., Zhang, R., et al., Catal. Today, 2015, vol. 264, pp. 37–43.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • D. V. Glyzdova
    • 1
  • N. S. Smirnova
    • 2
  • V. L. Temerev
    • 1
  • E. V. Khramov
    • 3
  • T. I. Gulyaeva
    • 1
  • M. V. Trenikhin
    • 1
    • 4
    • 5
  • D. A. Shlyapin
    • 1
  • P. G. Tsyrul’nikov
    • 1
  1. 1.Institute of Hydrocarbons Processing, Siberian BranchRussian Academy of SciencesOmskRussia
  2. 2.Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussia
  3. 3.Kurchatov Institute Research CenterMoscowRussia
  4. 4.Omsk State Technical UniversityOmskRussia
  5. 5.Omsk Scientific Center; Siberian BranchRussian Academy of SciencesOmskRussia

Personalised recommendations