Russian Journal of Applied Chemistry

, Volume 90, Issue 11, pp 1810–1818 | Cite as

Enhancement of the Sorption Ability of Aluminum Oxide Desiccants by Alkaline Modification

  • L. A. Isupova
  • I. G. Danilova
  • V. V. Danilevich
  • V. A. Ushakov
Specific Technological Processes


The influence of impregnation of aluminum oxide desiccants prepared by centrifugal thermal activation of hydrargillite with alkali (KОН and NaOH) and carbonate (Na2CO3 and K2СО3) solutions on the physicochemical properties of the products was studied. Impregnation with alkali solutions increases the dynamic capacity of the desiccants by a factor of 2 and more, whereas impregnation with carbonate solutions decreases the sorption characteristics of the desiccants at similar texture characteristics. Introduction of alkaline modifiers leads to a considerable decrease in the concentration of Lewis acid sites on the surface and to an increase in the concentration of strong base sites. Linear correlation was revealed between the concentration of strong base sites on the surface of the desiccants and their dynamic capacity in drying of humid air. The desiccants modified by impregnation exhibit not only high static and dynamic capacity, allowing improvement of the drying efficiency, but also considerably enhanced mechanical strength.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dabrowski, A., Adv. Colloid Interface Sci., 2001, vol. 93, nos. 1–3, pp. 135–224.CrossRefGoogle Scholar
  2. 2.
    Sircar, S., Rao, M.B., and Golden, T.C., Stud. Surf. Sci. Catal., 1999, vol. 120, pp. 395–423.CrossRefGoogle Scholar
  3. 3.
    Fleming, H.L., Stud. Surf. Sci. Catal., 1999, vol. 120, pp. 561–585.CrossRefGoogle Scholar
  4. 4.
    Shumyatskii, Yu.I., Promyshlennye adsorbtsionnye protsessy (Industrial Adsorption Processes), Moscow: KolosS, 2009.Google Scholar
  5. 5.
    Zotov, R.A., Glazyrin, A.A., Danilevich, V.V., et al., Kinet. Catal., 2012, vol. 53, no. 5, pp. 570–576.CrossRefGoogle Scholar
  6. 6.
    Danilevich, V.V., Isupova, L.A., Paukshtis, E.A., and Ushakov, V.A., Kinet. Catal., 2014, vol. 55, no. 3, pp. 372–379.CrossRefGoogle Scholar
  7. 7.
    Danilevich, V.V., Isupova, L.A., Danilova, I.G., et al., Russ. J. Appl. Chem., 2016, vol. 89, no. 3, pp. 341–351.CrossRefGoogle Scholar
  8. 8.
    Ducreux, O., Lavigne, C., and Nedez, C., Air and gas drying with activated aluminas. Scholar
  9. 9.
    Montanari, T., Castoldi, L., Lietti, L., and Busca, G., Appl. Catal. A: General, 2011, vol. 400, pp. 61–69.CrossRefGoogle Scholar
  10. 10.
    Shkrabina, R.A., Vorob’ev, Yu.K., Moroz, E.M., et al., Kinet. Katal., 1981, vol. 22, pp. 1080–1081.Google Scholar
  11. 11.
    Gregg, S.J. and Sing, K.S.W., Adsorption, Surface Area, and Porosity, London: Academic, 1982, 2nd ed.Google Scholar
  12. 12.
    Fenelonov, V.B., Vvedenie v fizicheskuyu khimiyu formirovaniya supramolekulyarnoi struktury adsorbentov i katalizatorov (Introduction to Physical Chemistry of the Supramolecular Structure Formation in Adsorbents and Catalysts), Novosibirsk: Sib. Otdel. Ross. Akad. Nauk, 2004.Google Scholar
  13. 13.
    Paukshtis, E.A., Infrakrasnaya spektroskopiya v geterogennom kislotno-osnovnom katalize (Infrared Spectroscopy in Heterogeneous Acid–Base Catalysis), Novosibirsk: Nauka, 1992.Google Scholar
  14. 14.
    Paukshtis, E.A., Soltanov, P.I., Yurchenko, E.N., and Jiratova, K., Coll. Czech. Chem. Commun., 1982, vol. 47, p. 2044.CrossRefGoogle Scholar
  15. 15.
    Digne, M., Raybaud, P., Sautet, P., et al., Phys. Chem. Chem. Phys., 2007, vol. 9, pp. 2577–2582.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • L. A. Isupova
    • 1
  • I. G. Danilova
    • 1
  • V. V. Danilevich
    • 1
  • V. A. Ushakov
    • 1
  1. 1.Boreskov Institute of CatalysisSiberian Branch, Russian Academy of SciencesNovosibirskRussia

Personalised recommendations