Russian Journal of Applied Chemistry

, Volume 90, Issue 11, pp 1760–1765 | Cite as

Kinetic Aspects of the Adsorption on Aluminum Oxide Drying Agents Doped with Alkali Metal Ions

  • S. I. ReshetnikovEmail author
  • A. V. Livanova
  • E. P. Meshcheryakov
  • I. A. Kurzina
  • L. A. Isupova
Inorganic Synthesis and Industrial Inorganic Chemistry


Fundamental dynamic (kinetic) aspects of the process in which water vapor interacts with the surface of drying agents that are synthesized on the basis of low-temperature modification of aluminum oxide produced from a pseudoboehmite-containing hydroxide and are modified (doped) with alkali atoms (K, Na). It is shown that the kinetics of adsorption on the samples under study, formed from the fine fraction (0.5–1.0 mm) of aluminum oxide adsorbents, can be described with the Glueckauf equation, which rather well describes the dynamics of water vapor absorption in the course of time. The equation parameters were determined: adsorption rate constants and the equilibrium adsorption capacities (a*). It was found that the alkaline modification of the surface of aluminum oxide adsorbents results in that a* increases (by ~40%) as compared with the unmodified drying agent. A correlation is observed between the equilibrium adsorption capacity of the samples under study and the acid-base properties of the surface.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Keltsev, N.V., Fundamentals of Adsorption Technology, Moscow, Chemistry, 1984.Google Scholar
  2. 2.
    Sircar, S., Rao, M.B., and Golden, T.C., Stud. Surf. Sci. Catal., 1999, vol. 120, pp. 395–423.CrossRefGoogle Scholar
  3. 3.
    Dambrowski, A., Adv. Colloid Interface Sci., 2001, vol. 93, nos. 1–3, pp. 135–224.CrossRefGoogle Scholar
  4. 4.
    Byk, S.Sh., Makogon, Yu.F., and Fomina, V.I., Gazovye gidraty (Gas Hydrates), Byk, S.Sh., Ed., Moscow: Khimiya, 1980.Google Scholar
  5. 5.
    Stiles, A.B., Catalyst Supports and Supported Catalysts: Theoretical and Applied Concepts (Russian Translation), Moscow: Khimiya, 1991, Chapter 2, p. 24.Google Scholar
  6. 6.
    Fleming, H.L., Stud. Surf. Sci. Catal., 1999, vol. 120, pp. 561–585.CrossRefGoogle Scholar
  7. 7.
    Danilevich, V.V., Isupova, L.A., Danilova, I.G., et al., Russ. J. Appl. Chem., 2016, vol. 89, no. 3, pp. 343–353.CrossRefGoogle Scholar
  8. 8.
    Zotov, R.A., Glazyrin, A.A., Danilevich, V.V., et al., Kinet Catal., 2012, vol. 53, pp. 570–576.CrossRefGoogle Scholar
  9. 9.
    Danilevich, V.V., Isupova, L.A., Kagyrmanova, A.P., et al., Kinet. Catal., 2012, vol. 53, pp. 632–639.CrossRefGoogle Scholar
  10. 10.
    Fleming, H.L., Stud. Surf. Sci. Catal., 1999, vol. 120, pp. 561–585.CrossRefGoogle Scholar
  11. 11.
    Gregg, S.J. and Sing, K.S.W., Adsorption Surface Area and Porosity, London: Academic Press, 1967.Google Scholar
  12. 12.
    Fenelonov, V.B., Vvedenie v fizicheskuyu khimiyu formirovaniya supramolekulyarnoi struktury adsorbentov i katalizatorov (Introduction to Physical Chemistry of Supramolecular Structure Formation in Adsorbents and Catalysts), Novosibirsk: Izd. Sib. Otd. Ross. Akad. Nauk, 2004.Google Scholar
  13. 13.
    Paukshtis, E.A., Infrakrasnaya spektroskopiya v geterogennom kislotno-osnovnom katalize (IR Spectroscopy in Heterogeneous Acid-Base Catalysis), Novosibirsk: Nauka, 1992.Google Scholar
  14. 14.
    Glueckauf, E. and Coates, J.I., J. Chem. Soc., 1947, pp. 1315–1321.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • S. I. Reshetnikov
    • 1
    Email author
  • A. V. Livanova
    • 1
  • E. P. Meshcheryakov
    • 1
  • I. A. Kurzina
    • 1
  • L. A. Isupova
    • 2
  1. 1.Tomsk State UniversityTomskRussia
  2. 2.Boreskov Institute of CatalysisSiberian Branch, Russian Academy of SciencesNovosibirskRussia

Personalised recommendations