Advertisement

Russian Journal of Applied Chemistry

, Volume 90, Issue 7, pp 1122–1129 | Cite as

Trimetallic NiMoW/Al2O3 hydrotreating catalyst based on H4SiMo3W9O40 mixed heteropoly acid

  • M. S. Nikulshina
  • A. V. Mozhaev
  • P. P. Minaev
  • M. Fournier
  • C. Lancelot
  • P. Blanchard
  • E. Payen
  • C. Lamonier
  • P. A. Nikulshin
Catalysis

Abstract

Trimetallic NiMoW/Al2O3 catalyst was prepared using mixed H4SiMo3W9O40 heteropoly acid of Keggin structure and nickel citrate. Bimetallic NiMo/Al2O3 and NiW/Al2O3 catalysts based on H4SiMo12O40 and H4SiW12O40, respectively, were synthesized as reference samples. The use of mixed H4SiMo3W9O40 heteropoly acid as an oxide precursor allows the tungsten sulfidation degree and the degree of promotion of active phase particles to be increased. The hydrodesulfurization activity is enhanced as compared to NiW/Al2O3 catalyst. The synergistic enhancement of the activity of the NiMo3W9/Al2O3 catalyst relative to the bimetallic analogs is probably caused by formation of new mixed promoted active sites for direct desulfurization.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Van Haandel, L., Bremmer, M., Kooyman, P.J., et al., ACS Catal., 2015, vol. 5, pp. 7276–7287.CrossRefGoogle Scholar
  2. 2.
    Mendoza-Nieto, J.A., Vera-Vallejo, O., Escobar-Alarcón, L., et al., Fuel, 2013, vol. 110, pp. 268–277.CrossRefGoogle Scholar
  3. 3.
    Calderón-Magdaleno, M.Á., Mendoza-Nieto, J.A., and Klimova, T.E., Catal. Today, 2014, vol. 220, pp. 78–88.CrossRefGoogle Scholar
  4. 4.
    Ho, T.C., Catal. Today, 2004, vol. 98, pp. 3–18.CrossRefGoogle Scholar
  5. 5.
    Srivastava, V.C., RSC Adv., 2012, vol. 2, pp. 759–783.CrossRefGoogle Scholar
  6. 6.
    Stanislaus, A., Marafi, A., and Rana, M.S., Catal. Today, 2010, vol. 153, pp. 1–68.CrossRefGoogle Scholar
  7. 7.
    Babich, I.V. and Moulijin, J.A., Fuel, 2003, vol. 82, pp. 607–631.CrossRefGoogle Scholar
  8. 8.
    Plantenga, F.L. and Leliveld, R.G., Appl. Catal. A, 2003, vol. 248, pp. 1–7.CrossRefGoogle Scholar
  9. 9.
    Eijsbouts, S., Plantenga, F., Leliveld, B., et al., Am. Chem. Soc. Div. Fuel Chem. Prep., 2003, vol. 48, pp. 494–495.Google Scholar
  10. 10.
    Kerby, M.C., Degnan, T.F., Jr., Marler, D.O., and Beck, J.S., Catal. Today, 2005, vol. 104, pp. 55–63.CrossRefGoogle Scholar
  11. 11.
    Sigurdson, S., Sundaramurthy, V., Dalai, A.K., and Adjaye, J., J. Mol. Catal. A: Chemical, 2008, vol. 291, pp. 30–37.CrossRefGoogle Scholar
  12. 12.
    Tomazeau, C., Geantet, C., Lacroix, M., et al., Appl. Catal. A, 2007, vol. 322, pp. 92–97.CrossRefGoogle Scholar
  13. 13.
    Yu, H., Li, S., and Jin, G., Energy Fuels, 2010, vol. 24, pp. 4419–4437.CrossRefGoogle Scholar
  14. 14.
    Liu, D., Liu, L., Li, G., and Liu, C., J. Nat. Gas Chem., 2010, vol. 19, pp. 530–538.CrossRefGoogle Scholar
  15. 15.
    Huirache-Acuña, R., Pawelec, B., Rivera-Munoz, E., et al., Appl. Catal. B, 2009, vol. 92, pp. 168–184.CrossRefGoogle Scholar
  16. 16.
    Cervantes-Gaxiola, M.E., Arroyo-Albiter, M., Pérez-Larios, A., et al., Fuel, 2013, vol. 113, pp. 733–743.CrossRefGoogle Scholar
  17. 17.
    Thomazeau, C., Geantet, C., and Lacroix, M., J. Solid State Chem., 2001, vol. 160, pp. 147–155.CrossRefGoogle Scholar
  18. 18.
    Nikulshin, P., Mozhaev, A., Lancelot, C., et al., C. R. Chim., 2016, vol. 19, pp. 1276–1285.CrossRefGoogle Scholar
  19. 19.
    Van Veen, J.A.R., Hendriks, P.A.J.M., Andrea, R.R., et al., J. Phys. Chem., 1990, vol. 94, pp. 5282–5285.CrossRefGoogle Scholar
  20. 20.
    Cabello, C.I., Cabrerizo, F., Alvarez, A., and Thomas, H., J. Mol. Catal. A, 2002, vol. 186, pp. 89–97.CrossRefGoogle Scholar
  21. 21.
    Rocchiccioli-Deltcheff, C., Fournier, M., Franck, R., and Thouvenot, R., Inorg. Chem., 1983, vol. 22, pp. 207–216.CrossRefGoogle Scholar
  22. 22.
    Herv, G. and Tézé, A., Inorg. Chem., 1977, vol. 16, pp. 2115–2117.CrossRefGoogle Scholar
  23. 23.
    Sanchez, C., Livage, J., and Launay, J.P., J. Am. Chem. Soc., 1982, vol. 104, pp. 3194–3202.CrossRefGoogle Scholar
  24. 24.
    Mozhaev, A.V., Nikulshin, P.A., Pimerzin, Al.A., et al., Catal. Today, 2016, vol. 271, pp. 80–90.CrossRefGoogle Scholar
  25. 25.
    Nikulshin, P.A., Mozhaev, A.V., Maslakov, K.I., et al., Appl. Catal. B, 2014, vols. 158–159, pp. 161–174.CrossRefGoogle Scholar
  26. 26.
    Minaev, P.P., Nikulshin, P.A., Kulikova, M.S., et al., Appl. Catal. A, 2015, vol. 505, pp. 456–466.CrossRefGoogle Scholar
  27. 27.
    Kasztelan, S., Toulhoat, H., Grimblot, J., and Bonnelle, J.P., Appl. Catal., 1984, vol. 13, pp. 127–159.CrossRefGoogle Scholar
  28. 28.
    Toulhoat, H. and Raybaud, P., IFP Energ. Nouv., 2013, vol. 68, p. 832.Google Scholar
  29. 29.
    Nikulshin, P.A., Ishutenko, D.I., Mozhaev, A.A., et al., J. Catal., 2014, vol. 312, pp. 152–169.CrossRefGoogle Scholar
  30. 30.
    Nikulshin, P.A., Minaev, P.P., Mozhaev, A.V., et al., Appl. Catal. B, 2015, vol. 176, pp. 374–384.CrossRefGoogle Scholar
  31. 31.
    Nikulshin, P.A., Salnikov, V.A., Varakin, A.N., and Kogan, V.M., Catal. Today, 2016, vol. 271, pp. 45–55.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • M. S. Nikulshina
    • 1
    • 2
  • A. V. Mozhaev
    • 1
  • P. P. Minaev
    • 1
  • M. Fournier
    • 2
  • C. Lancelot
    • 2
  • P. Blanchard
    • 2
  • E. Payen
    • 2
  • C. Lamonier
    • 2
  • P. A. Nikulshin
    • 1
    • 3
  1. 1.Samara State Technical UniversitySamaraRussia
  2. 2.Université Lille 1, UCCS, Cité Scientifique, Bât. C3Villeneuve d’AscqFrance
  3. 3.All-Russia Research Institute of Oil RefiningMoscowRussia

Personalised recommendations