Advertisement

Russian Journal of Applied Chemistry

, Volume 90, Issue 7, pp 1107–1116 | Cite as

Superhydrophobic conducting coatings based on silicone matrix and carbon nanotubes

  • K. A. ShashkeevEmail author
  • V. S. Nagornaya
  • I. A. Volkov
  • S. V. Kondrashov
  • T. P. D’yachkova
  • A. I. Kondakov
  • K. M. Borisov
  • G. Yu. Yurkov
Composite Materials

Abstract

Preparation of superhydrophobic conducting coatings based on silicone matrix and two types of carbon nanotubes, native and modified with alkyl groups, is described. The amount of carbon nanotubes per unit surface area was kept constant in all the samples, whereas the content of the polymer matrix was varied. The electrical conductivity, contact angle, and sliding angle were measured. The structure of the coatings was studied with an optical profilometer and a scanning electron microscope. The largest contact angle was 158.4° for the sample with 50 wt % content of native carbon nanotubes. For the samples with more than 20 wt % content of carbon nanotubes of both types, the sliding angle was less than 1°. Changes in the micro- and nanostructure of the coatings, observed with variation of the content of the polymer matrix in the samples, were studied. The relationship between the structural changes, on the one hand, and hydrophobic and water sliding properties of the conducting coatings, on the other hand, was demonstrated.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kablov, E.N., Aviats. Mater. Tekhnol., 2015, no. 1, pp. 3–33.Google Scholar
  2. 2.
    Kablov, E.N., Vopr. Materialoved., 2006, no. 1, p. 64.Google Scholar
  3. 3.
    Kablov, E.N., Kondrashov, S.V., and Yurkov, G.Y., Nanotechnol. Russia, 2013, vol. 8, nos. 3–4, pp. 163–185.CrossRefGoogle Scholar
  4. 4.
    Kondrashov, S.V., Shashkeev, K.A., Popkov, O.V., and Solov’yanchik, L.V., Tr. VIAM: Elektron. Nauch.-Tekh. Zh., 2016, no. 3, paper 07, http://www.viam-works.ru (addressed May 29, 2017).Google Scholar
  5. 5.
    Boinovich, L.B. and Emelyanenko, A.M., Russ. Chem. Rev., 2008, vol. 77, no. 7, pp. 619–638.CrossRefGoogle Scholar
  6. 6.
    Hanus, M.J. and Harris, A.T., Prog. Mater. Sci., 2013, vol. 58, no. 7, pp. 1056–1102.CrossRefGoogle Scholar
  7. 7.
    Gagné, M. and Therriault, D., Prog. Aerospace Sci., 2014, vol. 64, pp. 1–16.CrossRefGoogle Scholar
  8. 8.
    Bhushan, B. and Jung, Y.C., Prog. Mater. Sci., 2011, vol. 56, no. 1, pp. 1–108.CrossRefGoogle Scholar
  9. 9.
    Li, L., Li, B., Dong, J., et al., J. Mater. Chem. A, 2016, vol. 4, no. 36, pp. 13677–13725.CrossRefGoogle Scholar
  10. 10.
    Horiuchi, Y., Fujiwara, K., Kamegawa, T., et al., J. Mater. Chem., 2011, vol. 21, no. 24, pp. 8543–8546.CrossRefGoogle Scholar
  11. 11.
    Yao, T., Wang, C., Lin, Q., et al., Nanotechnology, 2009, vol. 20, no. 6, p. 065304.CrossRefGoogle Scholar
  12. 12.
    Zhang, C., Zhang, S., Gao, P., et al., Thin Solid Films, 2014, vol. 570, pp. 27–32.CrossRefGoogle Scholar
  13. 13.
    Hu, Y., Huang, C., Su, D., et al., Appl. Surf. Sci., 2011, vol. 257, no. 14, pp. 6044–6048.CrossRefGoogle Scholar
  14. 14.
    Cheng, Q., Li, M., Zheng, Y., et al., Soft Matter, 2011, vol. 7, no. 13, pp. 5948–5951.CrossRefGoogle Scholar
  15. 15.
    Park, S.-H., Cho, E.-H., Sohn, J., et al., Nano Res., 2013, vol. 6, no. 6, pp. 389–398.CrossRefGoogle Scholar
  16. 16.
    Yoon, T.O., Shin, H.J., Jeoung, S.J., and Park, Y.-I., Opt. Expr., 2008, vol. 16, no. 17, pp. 12715–12725.CrossRefGoogle Scholar
  17. 17.
    Kim, T., Tahk, D., and Lee, H.H., Langmuir, 2009, vol. 25, no. 11, pp. 6576–6579.CrossRefGoogle Scholar
  18. 18.
    Tang, H., Wang, H., and He, J., J. Phys. Chem. C, 2009, vol. 113, no. 32, pp. 14220–14224.CrossRefGoogle Scholar
  19. 19.
    Tokudome, Y., Okada, K., Nakahira, A., and Takahashi, M., J. Mater. Chem. A, 2014, vol. 2, no. 1, pp. 58–61.CrossRefGoogle Scholar
  20. 20.
    Bauhofer, W. and Kovacs, J.Z., Compos. Sci. Technol., 2009, vol. 69, no. 10, pp. 1486–1498.CrossRefGoogle Scholar
  21. 21.
    Jung, Y.C. and Bhushan, B., ACS Nano, 2009, vol. 3, no. 12, pp. 4155–4163.CrossRefGoogle Scholar
  22. 22.
    Xu, D., Liu, H., Yang, L., and Wang, Z., Carbon, 2006, vol. 44, no. 15, pp. 3226–3231.CrossRefGoogle Scholar
  23. 23.
    Lu, W. and Chou, T.W., J. Mech. Phys. Solids, 2011, vol. 59, no. 3, pp. 511–524.CrossRefGoogle Scholar
  24. 24.
    Polymer–Carbon Nanotube Composites: Preparation, Properties and Applications, McNally, T. and Pötschke, P., Eds., Elsevier, 2011.Google Scholar
  25. 25.
    Mokarian, Z., Rasuli, R., and Abedini, Y., Appl. Surf. Sci., 2016, vol. 369, pp. 567–575.CrossRefGoogle Scholar
  26. 26.
    Pauw, L. van der, Philips Res. Rep., 1958, vol. 13, pp. 1–9.Google Scholar
  27. 27.
    Kilbride, B.E. and Coleman, J.N., J. Appl. Phys., 2002, vol. 92, no. 7, pp. 4024–4030.CrossRefGoogle Scholar
  28. 28.
    Foygel, M., Morris, R.D., Anez, D., et al., Phys. Rev. B, 2005, vol. 71, no. 10, p. 104201.CrossRefGoogle Scholar
  29. 29.
    Bhushan, B. and Nosonovsky, M., Phil. Trans. Roy. Soc. London A: Math., Phys. Eng. Sci., 2010, vol. 368, no. 1929, pp. 4713–4728.CrossRefGoogle Scholar
  30. 30.
    Zhu, H., Guo, Z., and Liu, W., Chem. Commun., 2014, vol. 50, no. 30, pp. 3900–3913.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • K. A. Shashkeev
    • 1
    Email author
  • V. S. Nagornaya
    • 1
    • 2
  • I. A. Volkov
    • 1
  • S. V. Kondrashov
    • 1
  • T. P. D’yachkova
    • 3
  • A. I. Kondakov
    • 3
  • K. M. Borisov
    • 4
  • G. Yu. Yurkov
    • 5
  1. 1.All-Russia Research Institute of Aviation MaterialsMoscowRussia
  2. 2.Mendeleev University of Chemical Technology of RussiaMoscowRussia
  3. 3.Tambov State Technical UniversityTambovRussia
  4. 4.Enikolopov Institute of Synthetic Polymer MaterialsRussian Academy of SciencesMoscowRussia
  5. 5.Baikov Institute of Metallurgy and Materials ScienceRussian Academy of SciencesMoscowRussia

Personalised recommendations