Advertisement

Russian Journal of Applied Chemistry

, Volume 90, Issue 7, pp 1047–1054 | Cite as

Synthesis and properties of nanocrystalline materials based on LaPO4

  • K. M. Kenges
  • O. V. ProskurinaEmail author
  • D. P. Danilovich
  • M. K. Aldabergenov
  • V. V. Gusarov
Inorganic Synthesis and Industrial Inorganic Chemistry

Abstract

A study of the processes in which lanthanum orthophosphate nanocrystalline powders with rhabdophane and monazite structure and crystallite size of about 10 nm are formed demonstrated that, at temperatures of up to 500°C, nanocrystalline lanthanum orthophosphate with rhabdophane structure loses crystal hydrate water and is transformed at 520–540°C to a nanocrystalline phase with monazite structure. This transition is not associated with as change in the crystallite size because nanocrystals of the anhydrous lanthanum orthophosphate phase with monazite structure retain a size of about 10 nm both at the instant of the structural transformation and up to temperatures of 600–700°C. The technological modes were determined in which nanocrystalline lanthanum orthophosphate powders with monazite structure can be obtained and the powders are used for sintering of ceramic materials with porosity on the level of 5–7%.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Antony, A. and Ananthakumar, S., Natl. Conf. Re cent Innovations Sci. Eng. (NCRISE), 2017, vol. 3, no. 4, pp. 26–37.Google Scholar
  2. 2.
    Wang, R., Pan, W., Chen, J., et al., Mater. Chem. Phys., 2003, vol. 79, no. 1, pp. 30–36.CrossRefGoogle Scholar
  3. 3.
    Hikichi, Y. and Nomura, T., J. Am. Ceram. Soc., 1987, vol. 70, no. 10, pp. 252–253.CrossRefGoogle Scholar
  4. 4.
    Ananthapadmanabhan, P.V., Sreekumar, K.P., Thiyagarajan, T.K., et al., Mater. Chem. Phys., 2009, vol. 113, no. 1, pp. 417–421.CrossRefGoogle Scholar
  5. 5.
    Gavrichev, K.S., Ryumin, M.A., Tyurin, A.V., et al., J. Therm. Anal. Calorim., 2010, vol. 102, no. 2, pp. 809–811.CrossRefGoogle Scholar
  6. 6.
    Bryukhanova, K.I., Nikiforova, G.E., and Gavrichev, K.S., Nano syst.: Phys., Chem., Math., 2016, vol. 7, no. 3, pp. 451–458.Google Scholar
  7. 7.
    Sujith, S.S., Arun Kumar, S.L., Mangalaraja, R.V., et al., Ceram. Int., 2014, vol. 40, no. 9, Part B, pp. 15121–15129.CrossRefGoogle Scholar
  8. 8.
    Wang, R., Pan, W., Chen, J., et. al., Ceram. Int., 2003, vol. 29, no. 1, pp. 19–25.CrossRefGoogle Scholar
  9. 9.
    Wang, R., Pan, W., Chen, J., et. al., Ceram. Int., 2003, vol. 29, no. 1, pp. 83–89.CrossRefGoogle Scholar
  10. 10.
    Min, W., Daimon, K., Matsubara, T., and Hikichi, Y., Mater. Res. Bull., 2002, vol. 37, no. 6, pp. 1107–1115.CrossRefGoogle Scholar
  11. 11.
    Fang, Y.P., Xu, A.-W., Song, R.-Q., et al., J. Am. Chem. Soc., 2003, vol. 125, no. 51, pp. 16 025–16 034.CrossRefGoogle Scholar
  12. 12.
    Terra, O., Clavier, N., Dacheux, N., and Podor, R., New J. Chem., 2003, vol. 27, no. 6, pp. 957–967.CrossRefGoogle Scholar
  13. 13.
    Grechanovskii, A.E., Eremin, N.N., and Urusov, V.S., Phys. Solid State, 2013, vol. 55, no. 9, pp. 1929–1935.CrossRefGoogle Scholar
  14. 14.
    Ohtaki, K.K., Heravi, N.J., Leadbetter, J.W., et al., Solid State Ionics, 2016, vol. 293, pp. 44–50.CrossRefGoogle Scholar
  15. 15.
    Gallini, S., Hänsel, M., Norby, T., et al., Solid State Ionics, 2003, vols. 162–163, pp. 167–173.CrossRefGoogle Scholar
  16. 16.
    Pimpalshende, D.M. and Dhoble, S.J., Adv. Mater. Lett., 2014, vol. 5, no. 12, pp. 688–691.CrossRefGoogle Scholar
  17. 17.
    Shaik, N.P., Poornachandra Rao, N.V., and Murthy, K.V.R., Adv. Mater. Lett., 2014, vol. 5, no. 12, pp. 722–727.CrossRefGoogle Scholar
  18. 18.
    Mooney, R.C.L., Acta Crystallogr., 1950, vol. 3, no. 5, pp. 337–340.CrossRefGoogle Scholar
  19. 19.
    Buissette, V., Moreau, M., Gacoin, T., et al., Chem. Mater., 2004, vol. 16, no. 19, pp. 3767–3773.CrossRefGoogle Scholar
  20. 20.
    Yang, M., You, H., Liang, Y., et al., J. Alloys Compd., 2014, vol. 582, pp. 603–608.CrossRefGoogle Scholar
  21. 21.
    Gallini, S., Jurado, J.R., and Colomer, M.T., Chem. Mater., 2005, vol. 17, no. 16, pp. 4154–4161.CrossRefGoogle Scholar
  22. 22.
    Osipov, A.V., Mezentseva, L.P., Drozdova, I.A., et al., Glass Phys. Chem., 2009, vol. 35, no. 4, pp. 431–435.CrossRefGoogle Scholar
  23. 23.
    Ugolkov, V.L., Mezentseva, L.P., Osipov, A.V., et al., Russ. J. Appl. Chem., 2017, vol. 90, no. 1, pp. 28–33.CrossRefGoogle Scholar
  24. 24.
    Byrappa, K., Devaraju, M.K., Paramesh, J.R., et al., J. Mater. Sci., 2008, vol. 43, no. 7, pp. 2229–2233.CrossRefGoogle Scholar
  25. 25.
    Schatzmann, M.T., Mecartney, M.L., and Morgan, P.E.D., J. Mater. Chem., 2009, vol. 19, no. 32, pp. 5720–5722.CrossRefGoogle Scholar
  26. 26.
    Colomer, M.T., Diaz-Guillen, J.A., and Fuentes, A.F., J. Am. Ceram. Soc., 2010, vol. 93, no. 2, pp. 393–398.CrossRefGoogle Scholar
  27. 27.
    Bregiroux, D., Audubert, F., and Bernache-Assollant, D., Ceram. Int., 2009, vol. 35, no. 3, pp. 1115–1120.CrossRefGoogle Scholar
  28. 28.
    Andrievskiy, R.A., Russ. Chem. Rev., 1994, vol. 63, no. 5, pp. 411–427.CrossRefGoogle Scholar
  29. 29.
    Jonasson, R.G. and Vance, E.R., Thermochim. Acta, 1986, vol. 108, pp. 65–72.CrossRefGoogle Scholar
  30. 30.
    Almjasheva, O.V. and Denisova, T.A., Russ. J. Gen. Chem., 2017, vol. 87, no. 1, pp. 1–7.CrossRefGoogle Scholar
  31. 31.
    Almjasheva, O.V., Nanosyst.: Phys., Chem., Math., 2016, vol. 7, no. 6, pp. 1031–1069.Google Scholar
  32. 32.
    Popkov, V.I., Almjasheva, O.V., Panchuk, V.V., et al., Doklady Chem., 2016, vol. 471, no. 2, pp. 356–359.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • K. M. Kenges
    • 1
  • O. V. Proskurina
    • 1
    • 2
    Email author
  • D. P. Danilovich
    • 3
  • M. K. Aldabergenov
    • 1
  • V. V. Gusarov
    • 2
  1. 1.Al-Farabi Kazakh National UniversityAlmatyKazakhstan
  2. 2.Ioffe InstituteSt. PetersburgRussia
  3. 3.St. Petersburg State Technological Institute (Technical University)St. PetersburgRussia

Personalised recommendations