Russian Journal of Applied Chemistry

, Volume 90, Issue 2, pp 186–192 | Cite as

Photocatalytic activity and physicochemical characteristics of modified potassium polytitanates in the reaction of decomposition of aqueous-alcoholic solutions

  • N. V. Arkhipova
  • A. A. Kuznetsova
Processes Using Various Catalyst Systems


Study of the photocatalytic activity of nanomaterials based on potassium polytitanate modified with transition metal ions (Ni2+, Cr3+, Cu2+) demonstrated that the cation composition, morphology of photocatalyst particles, and their size strongly affect the photocatalytic activity. The rate of the photoinduced hydrogen evolution from the aqueous-alcoholic solution grows in the series of potassium polytitanates modified with Cu2+, Ni2+, Cr3+ ions, and that from pure water, for potassium polytitanates modified with Ni2+,Cr3+, Cu2+ ions. The capacity for intercalation of water into the interlayer space does not strongly affect the rate of the photoinduced hydrogen evolution. It was shown that potassium polytitanate modified with Cr3+ ions has the maximum quantum efficiency (30%).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bak, T., Nowotny, J., Rekas, M., and Sorrell, C.C., Int. J. Hydrogen Energy, 2002, vol. 27, pp. 991–1022.CrossRefGoogle Scholar
  2. 2.
    Park, J.H., Kim, S., and Bard, A.J., Nano Lett., 2006, no. 6, pp. 24–28.CrossRefGoogle Scholar
  3. 3.
    Vorontsov, A.V., Kozlova, E.A., Besov, A.S., et al., Kinet. Kataliz, 2010, vol. 51, no. 6, pp. 829–836.Google Scholar
  4. 4.
    Lyubina, T.P. and Kozlova, E.A., Kinet. Kataliz, 2012, vol. 53, no. 2, pp. 197–204.CrossRefGoogle Scholar
  5. 5.
    Kozlova, E.A., Rempel’, A.A., Valeeva, A.A., et al., Kinet. Kataliz, 2015, vol. 56, no. 4, pp. 521–530.Google Scholar
  6. 6.
    Klauson, D., Budarnaya, O., Stepanova, K., et al., Kinet. Kataliz, 2014, vol. 55, no. 1, pp. 50–56.Google Scholar
  7. 7.
    Vakhrushev, A.Yu., Gorbunova, V.V., Boitsova, T.B., and Stozharov, V.M., Zh. Obshch. Khim., 2016, vol. 86, no. 4, pp. 603–608.Google Scholar
  8. 8.
    Zvereva, I.A., Silyukov, O.I., and Shislov, M.V., J. Gen. Chem., 2011, vol. 81, no. 7, pp. 1083–1091.CrossRefGoogle Scholar
  9. 9.
    Rodionov, I.A., Silyukov, O.I., Utkina, T.D., et al., J. Gen. Chem., 2012, vol. 82, no. 7, pp. 1064–1070.CrossRefGoogle Scholar
  10. 10.
    Burovikhina, A.A., Silyukov, O.I., Rodionov, I.A., et al., J. Gen. Chem., 2014, vol. 84, no. 10, pp. 1612–1617).CrossRefGoogle Scholar
  11. 11.
    Tret’yachenko, E.V., Gorokhovskii, A.B., and Yurkov, G.Yu., Nanotekhnika, 2012, no. 3, pp. 56–59.Google Scholar
  12. 12.
    Tret’yachenko, E.V., Smirnova, O.A., Nikityuk, T.V., et al., Bashk. Khim. Zh., 2012, vol. 19, no. 1, pp. 38–41.Google Scholar
  13. 13.
    Kositzi, M., Poulios, I., Malato, S., et al., Water Res., 2004, vol. 38, pp. 1147–1154.CrossRefGoogle Scholar
  14. 14.
    Antoniadou, M. and Lianos, P., Appl. Catal., B, 2010, vol. 99, pp. 307–313.CrossRefGoogle Scholar
  15. 15.
    Kaneko, M., Ueno, H., Saito, R., et al., Appl. Catal., B, 2009, vol. 91, pp. 254–261.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Yuri Gagarin State Technical University of SaratovSaratovRussia

Personalised recommendations