Advertisement

Russian Journal of Applied Chemistry

, Volume 89, Issue 12, pp 1969–1977 | Cite as

Modification of the surface of carbon fibers with multi-walled carbon nanotubes and its effect on mechanical characteristics of composites with epoxy resin

  • S. I. MoseenkovEmail author
  • D. V. Krasnikov
  • M. A. Kazakova
  • V. L. Kuznetsov
  • A. N. Serkova
Various Technological Processes

Abstract

Effect of the catalyst composition on the structure of nanotubes layers obtained on the surface of carbon nanofibers was studied. We found the preliminary functionalization of the surface of carbon fibers to affect the coating uniformity and the thickness of synthesized nanotube layer. We determined the optimal surface concentration of the catalyst (Fe–Co) which provides uniform layer of nanotubes on the surface of carbon fibers. The effect of modification of the surface of carbon fibers with multi-walled carbon nanotubes on the mechanical properties of carbon fiber–epoxy resin composites was examined. The modification of the carbon fibers with multi-walled carbon nanotubes were shown to increase the flexural modulus and the flexural strength.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tang, L.-G. and Kardos, J.L., Polym. Compos., 1997, vol. 18, no. 1, pp. 100–113.CrossRefGoogle Scholar
  2. 2.
    Karger-Kocsis, J., Mahmood, H., and Pegoretti, A., Prog. Mater. Sci., 2015, vol. 73, pp. 1–43.CrossRefGoogle Scholar
  3. 3.
    Yudin V. E. and Leksowskij A. M., Phys. Solid State. 2005, vol. 47, no. 5, pp. 975–983.CrossRefGoogle Scholar
  4. 4.
    Hughes, J.D.H., Compos. Sci. Technol., 1991, vol. 41, no. 1, pp. 13–45.CrossRefGoogle Scholar
  5. 5.
    Yamamoto, N., John Hart, A., Garcia, E.J., et al., Carbon, 2009, vol. 47, no. 3, pp. 551–560.CrossRefGoogle Scholar
  6. 6.
    Zhang, Q., Huang, J.-Q., Qian, W.-Z., et al., Small, 2013, vol. 9, no. 8, pp. 1237–1265.CrossRefGoogle Scholar
  7. 7.
    Spitalsky, Z., Tasis, D., Papagelis, K., et al., Prog. Polym. Sci., 2010, vol. 35, no. 3, pp. 357–401.CrossRefGoogle Scholar
  8. 8.
    Sahoo, N.G., Rana, S., Cho, J.W., et al., Prog. Polym. Sci., 2010, vol. 35, no. 7, pp. 837–867.CrossRefGoogle Scholar
  9. 9.
    Sreejarani, K. and Suprakas Sinha, Advances in Nanocomposites–-Synthesis, Characterization, and Industrial Applications, Reddy, B., Ed., Rijeka: InTech, 2011.Google Scholar
  10. 10.
    Laachachi, A., Vivet, A., Nouet, G., et al., Mater. Lett., 2008, vol. 62, no. 3, pp. 394–397.CrossRefGoogle Scholar
  11. 11.
    He, X., Zhang, F., Wang, R., et al., Carbon, 2007, vol. 45, no. 13, pp. 2559–2563.CrossRefGoogle Scholar
  12. 12.
    An, Q., Rider, A.N., and Thostenson, E.T., Carbon, 2012, vol. 50, no. 11, pp. 4130–4143.CrossRefGoogle Scholar
  13. 13.
    Tamrakar, S., An, Q., Thostenson, E.T., et al., ACS Appl. Mater. Interfaces, 2016, vol. 8, no. 2, pp. 1501–1510.CrossRefGoogle Scholar
  14. 14.
    Otsuka, K., Abe, Y., Kanai, N., et al., Carbon, 2004, vol. 42, no. 4, pp. 727–736.CrossRefGoogle Scholar
  15. 15.
    Hung, K.H., Kuo, W.S., Ko, T.H., et al., Compos. Part Appl. Sci. Manuf., 2009, vol. 40, no. 8, pp. 1299–1304.CrossRefGoogle Scholar
  16. 16.
    Kim, K.J., Kim, J., Yu, W.-R., et al., Carbon, 2013, vol. 54, pp. 258–267.CrossRefGoogle Scholar
  17. 17.
    Boroujeni, A.Y., Tehrani, M., Nelson, A.J., et al., Composites, Part B, 2014, vol. 66, pp. 475–483.CrossRefGoogle Scholar
  18. 18.
    Dey, N.K., Hong, E.M., Choi, K.H., et al., Proc. Eng., 2012, vol. 36, pp. 556–561.CrossRefGoogle Scholar
  19. 19.
    Agnihotri, P., Basu, S., and Kar, K.K., Carbon, 2011, vol. 49, no. 9, pp. 3098–3106.CrossRefGoogle Scholar
  20. 20.
    Sharma, S.P. and Lakkad, S.C., Surf. Coat. Technol., 2010, vol. 205, no. 2, pp. 350–355.CrossRefGoogle Scholar
  21. 21.
    Lomov, S.V., Gorbatikh, L., Houlle, M., et al., Compos. Sci. Technol., 2011, vol. 71, no. 15, pp. 1746–1753.CrossRefGoogle Scholar
  22. 22.
    Sonoyama, N., Ohshita, M., Nijubu, A., et al., Carbon, 2006, vol. 44, no. 9, pp. 1754–1761.CrossRefGoogle Scholar
  23. 23.
    Pozegic, T.R., Hamerton, I., Anguita, J.V., et al., Carbon, 2014, vol. 74, pp. 319–328.CrossRefGoogle Scholar
  24. 24.
    Lv, P., Feng, Y., Zhang, P., et al., Carbon, 2011, vol. 49, no. 14, pp. 4665–4673.CrossRefGoogle Scholar
  25. 25.
    Zhang, Q., Liu, J., Sager, R., et al., Compos. Sci. Technol., 2009, vol. 69, no. 5, pp. 594–601.CrossRefGoogle Scholar
  26. 26.
    Mathur, R.B., Chatterjee, S., and Singh, B.P., Compos. Sci. Technol., 2008, vol. 68, nos. 7–8, pp. 1608–1615.CrossRefGoogle Scholar
  27. 27.
    De Greef, N., Zhang, L., Magrez, A., et al., Diamond Relat. Mater., 2015, vol. 51, pp. 39–48.CrossRefGoogle Scholar
  28. 28.
    Zhao, J., Liu, L., Guo, Q., et al., Carbon, 2008, vol. 46, no. 2, pp. 380–383.CrossRefGoogle Scholar
  29. 29.
    Zhu, S., Su, C.-H., Lehoczky, S.L., et al., Diamond Relat. Mater., 2003, vol. 12, nos. 10–11, pp. 1825–1828.CrossRefGoogle Scholar
  30. 30.
    Islam, M.S., Deng, Y., Tong, L., et al., Carbon, 2016, vol. 96, pp. 701–710.CrossRefGoogle Scholar
  31. 31.
    Usoltseva, A., Kuznetsov, V., Rudina, N., et al., Phys. Status Solidi B, 2007, vol. 244, no. 11, pp. 3920–3924.CrossRefGoogle Scholar
  32. 32.
    Kuznetsov, V.L., Krasnikov, D.V., Shmakov, A.N., et al., Phys. Status Solidi B, 2012, vol. 249, no. 12, pp. 2390–2394.CrossRefGoogle Scholar
  33. 33.
    Krasnikov, D.V., Kuznetsov, V.L., Shmakov, A.N., et al., J. Struct. Chem., 2016, vol. 57, no. 7, pp. 1436–1443.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • S. I. Moseenkov
    • 1
    Email author
  • D. V. Krasnikov
    • 1
    • 2
  • M. A. Kazakova
    • 1
    • 2
  • V. L. Kuznetsov
    • 1
    • 2
  • A. N. Serkova
    • 1
  1. 1.Boreskov Institute of Catalysis, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations