Russian Journal of Applied Chemistry

, Volume 89, Issue 11, pp 1825–1830 | Cite as

Atomic layer deposition of tantalum oxide with controlled oxygen deficiency for making resistive memory structures

  • K. V. Egorov
  • D. S. Kuz’michev
  • Yu. Yu. Lebedinskii
  • A. M. Markeev
Catalysis
  • 45 Downloads

Abstract

TaO x films with controlled ratio of Ta4+ and Ta5+ atoms were prepared at different hydrogen concentrations in plasma. As shown by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry, the chemical state of Ta4+ corresponds to oxygen vacancies in the TaO x film. Electrophysical studies of the metal–dielectric–metal structures revealed an increase in the leakage current by four orders of magnitude as the hydrogen concentration in the plasma was increased from 7 to 70%, which is due to an increase in the concentration of oxygen vacancies in TaO x . A test structure of a resistive memory cell was made on the basis of the nonstoichiometric TaO x obtained. It withstood more than 106 rewriting cycles. The suggested atomic layer deposition process shows promise for solving one of the main problems of resistive memory: extension of its working life.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Malygin, A.A., Drozd, V.E., Malkov, A.A., and Smirnov, V.M., Chem. Vap. Depos., 2015, vol. 21, pp. 216–240.CrossRefGoogle Scholar
  2. 2.
    Malygin, A.A., Russ. J. Appl. Chem., 1996, vol. 69, no. 10, pp. 1419–1426.Google Scholar
  3. 3.
    Malygin, A.A., J. Ind. Eng. Chem., 2006, vol. 12, pp. 1–11.Google Scholar
  4. 4.
    Miikkulainen, V., Leskelä, M., Ritala, M., and Puurunen, R.L., J. Appl. Phys., 2013, vol. 113, pp. 021301-1–021301-101.CrossRefGoogle Scholar
  5. 5.
    Hwang, C.S., Kim, S.K., and Lee, S.W., Atomic Layer Deposition for Semiconductors, Hwang, C.S., Ed., Springer, 2014, p. 73.Google Scholar
  6. 6.
    Hausmann, D.M., Kim, E., and Becker, J., and Gordon, R.G., Chem. Mater., 2002, vol. 14, pp. 4350–4358.CrossRefGoogle Scholar
  7. 7.
    Kukli, K., Ritala, M., Sajavaara, T., et al., Chem. Vap. Depos., 2002, vol. 8, pp. 199–204.CrossRefGoogle Scholar
  8. 8.
    Mantovan, R., Georgieva, M., Perego, M., et al., Acta Phys. Polon. A, 2007, vol. 112, pp. 1271–1280.CrossRefGoogle Scholar
  9. 9.
    Egorov, K.V., Lebedinskii, Yu.Yu., Markeev, A.M., and Orlov, O.M., Appl. Surf. Sci., 2015, vol. 365, pp. 454–459.CrossRefGoogle Scholar
  10. 10.
    Egorov, K.V., Kirtaev, R.V., Lebedinskii, Y.Y., et al., Phys. Status Solidi, 2012, vol. 212, pp. 809–816.CrossRefGoogle Scholar
  11. 11.
    Markeev, A., Chouprik, A., Egorov, K., et al., Microelectron. Eng., 2013, vol. 109, pp. 342–345.CrossRefGoogle Scholar
  12. 12.
    Kukli, K., Ritala, M., and Leskela, M., J. Electrochem. Soc., 1995, vol. 142, pp. 1670–1675.CrossRefGoogle Scholar
  13. 13.
    Cacucci, A., Loffredo, S., Potin, V., et al., Surf. Coat. Technol., 2013, vol. 227, pp. 38–41.CrossRefGoogle Scholar
  14. 14.
    Seo, J., Zhao, L., Cha, D., et al., J. Phys. Chem. C, 2013, vol. 117, pp. 11635–11646.CrossRefGoogle Scholar
  15. 15.
    Awaludin, Z., Safuan, M., Okajima, T., and Ohsaka, T., J. Mater. Chem. A, 2015, vol. 3, pp. 16791–16800.CrossRefGoogle Scholar
  16. 16.
    Awaludin, Z., Safuan, M., Okajima, T., and Ohsaka, T., Phys. Chem. Chem. Phys., 2014, vol. 16, pp. 5755–5762.CrossRefGoogle Scholar
  17. 17.
    Goux, L., Fantini, A., Kar, G., et al., Dig. Tech. Pap., Symp. VLSI Technol., 2012, pp. 159–160.Google Scholar
  18. 18.
    Wu, Y., Lee, B., and Wong, H.S.P., IEEE Electron Device Lett., 2010, vol. 31, pp. 1449–1451.CrossRefGoogle Scholar
  19. 19.
    Lee, H.Y., Chen, Y.S., Chen, P.S., et al., IEDM Tech. Dig., 2010, pp. 19.7.1–19.7.4.Google Scholar
  20. 20.
    Govoreanu, B., Kar, G.S., Chen, Y., et al., IEDM Tech. Dig., 2011, pp. 31.6.1–31.6.4.Google Scholar
  21. 21.
    Wei, Z., Kanzawa, Y., Arita, K., et al., IEDM Tech. Dig., 2008, vol. 293, p. 5671467.Google Scholar
  22. 22.
    Yang, J.J., Zhang, M.-X., Strachan, J.P., et al., Appl. Phys. Lett., 2010, vol. 97, pp. 232102-1–232102-3.CrossRefGoogle Scholar
  23. 23.
    Lee, M.-J., Lee, C.B., Lee, D., et al., Nature Mater., 2011, vol. 10, pp. 625–630.CrossRefGoogle Scholar
  24. 24.
    Baek, I.G., Park, C.J., Ju, H., et al., IEDM Tech. Dig., 2011, p. 737.Google Scholar
  25. 25.
    Park, S.G., Yang, M.K., Ju, H., et al., IEDM Tech. Dig., 2012, pp. 20.8.1–20.8.4.Google Scholar
  26. 26.
    Seok, J.Y., Song, S.J., Yoon, J.H., et al., Adv. Funct. Mater., 2014, vol. 24, pp. 5316–5339.CrossRefGoogle Scholar
  27. 27.
    Park, S.J., Lee, J.P., Jang, J.S., et al., Nanotechnology, 2013, vol. 24, paper 295202.Google Scholar
  28. 28.
    Diokh, T., Le-Roux, E., Jeannot, S., et al., Thin Solid Films, 2013, vol. 533, pp. 24–28.CrossRefGoogle Scholar
  29. 29.
    Lebedinskii, Yu.Yu., Chernikova, A.G., Markeev, A.M., and Kuzmichev, D.S., Appl. Phys. Lett., 2015, vol. 107, pp. 142904-1–142904-4.CrossRefGoogle Scholar
  30. 30.
    Brumbach, M.T., Mickel, P.R., Lohn, A.J., et al., J. Vac. Sci. Technol. A, 2014, vol. 32, pp. 051403-1–151403-7.CrossRefGoogle Scholar
  31. 31.
    Ivanov, M.V., Perevalov, T.V., Aliev, V.S., et al., J. Appl. Phys., 2011, vol. 110, pp. 024115-1–024115-5.CrossRefGoogle Scholar
  32. 32.
    Cococcioni, M. and de Gironcoli, S., Phys. Rev. B, 2005, vol. 71, pp. 035105-1–035105-16.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • K. V. Egorov
    • 1
  • D. S. Kuz’michev
    • 1
  • Yu. Yu. Lebedinskii
    • 1
  • A. M. Markeev
    • 1
  1. 1.Moscow Institute of Physics and Technology (State University)Dolgoprudnyi, Moscow oblastRussia

Personalised recommendations