Russian Journal of Applied Chemistry

, Volume 89, Issue 9, pp 1528–1535 | Cite as

A study of B12N12 nanocage as potential sensor for detection and reduction of 2,3,7,8-tetrachlorodibenzodioxin

  • L. Mahdavian
Various Technological Processes


The adsorption of the 2,3,7,8-tetrachlorodibenzodioxin (TCDD) molecule on the B12N12 nanocage (B12N12-NC) was studied by M06-2X/6-31++G** method. There are three sites for TCDD adsorption on B12N12-NC. The B–B atom pair in six-membered rings (B(6MR)–B(6MR)) of B12N12-NC is the preferable adsorption site. When TCDD approaches the B12N12 nanocage, electronic exchange between them occurs, and TCDD is converted to 3,4-dichlorophenol, 3-chloroprop-2-en-1-ol, and 1-chloroprop-1-ene. The HOMO/LUMO energy, energy gaps (E g), thermodynamic properties, and structural deformation are calculated by DFT methods. The lowest value of E g (3.796 eV) was obtained for TS-3 (the first transition state of conversion of intermediate 3,4-dichlorophenol to 3-chloroprop-2-en-1-ol and 1-chloroprop-1-ene). The Gibbs free energy and heat of reactions are negative; therefore, these reactions are favorable and spontaneous and make B12N12-NC suitable as nanosensor for TCDD detection and reduction.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wang, B.J. et al., J. Hazard. Mater., 2010, vol. 161, pp. 800–807.CrossRefGoogle Scholar
  2. 2.
    Mousavi, M., Taymouri, A., and Ghaffarian, V., Int. J. Environ. Sci. Technol., 2009, vol. 6, no. 3, pp. 499–508.CrossRefGoogle Scholar
  3. 3.
    Esrafili, M.D. and Nurazar, R., Surf. Sci., 2014, vol. 626, pp. 44–48.CrossRefGoogle Scholar
  4. 4.
    Momeniha, F., Nabizadeh, R., Hassanvand, M.S., et al., Iran. Bull. Environ. Contam. Toxicol., 2011, vol. 87, no. 6, pp. 708–712.CrossRefGoogle Scholar
  5. 5.
    Gharib, A., Vojdanifard, L., Noroozi Pesyan, N., et al., Bulg. Chem. Commun., 2014, vol. 46, no. 4, pp. 667–679.Google Scholar
  6. 6.
    Jensen, F. and Toftlund, H., Chem. Phys. Lett., 1993, vol. 201, nos. 1–4, pp. 89–96.CrossRefGoogle Scholar
  7. 7.
    Hosseini, M., Ghozatloo, A., and Shariaty-Niassar, M., J. Nanostruct. Chem., 2015, vol. 5, no. 2, pp. 219–226.CrossRefGoogle Scholar
  8. 8.
    Noei, M., Ebrahimikia, M., Saghapour, Y., et al., J. Nanostruct. Chem., 2015, vol. 5, no. 2, pp. 213–217.CrossRefGoogle Scholar
  9. 9.
    Mazhdi, M., Saydi, J., and Mazhdi, F., Int. J. Bio-Inorg. Hybr. Nanomater., 2013, vol. 2, no. 1, pp. 295–302.Google Scholar
  10. 10.
    Rajeshkumar, S., Ponnanikajamideen, M., Malarkodi, C., et al., J. Nanostruct. Chem., 2014, vol. 4, paper 96, pp. 1–9.CrossRefGoogle Scholar
  11. 11.
    Yourdkhani, S., Korona, T., and Hadipour, N.L., J. Phys. Chem. A, 2015, vol. 119, no. 24, pp. 6446–6467.CrossRefGoogle Scholar
  12. 12.
    Douglas, L., J. Phys. Chem. A, 2000, vol. 104, no. 15, pp. 3364–3366.CrossRefGoogle Scholar
  13. 13.
    Noei, M., Asadi, H., Salari, A.A., and Hosseini Mahjoob, S.M.R., Indian J. Fundam. Appl. Life Sci., 2014, vol. 4, no. 2, pp. 679–-685.Google Scholar
  14. 14.
    Beheshtian, J., Peyghan, A.A., and Bagheri, Z., Sens. Actuators B: Chemical, 2012, vols. 171–172, pp. 846–852.Google Scholar
  15. 15.
    Beheshtiana, J., Kamfiroozi, M., Bagheri, Z., and Ahmadi Peyghan, A., Chin. J. Chem. Phys., 2012, vol. 25, no. 1, pp. 60–64.CrossRefGoogle Scholar
  16. 16.
    Baei, M.T., Ahmadi Peyghan, A., and Bagheri, Z., Bull. Korean Chem. Soc., 2012, vol. 33, no. 10, pp. 3338–3342.CrossRefGoogle Scholar
  17. 17.
    Ahmadi Peyghan, A. and Soleymanabadi, H., Curr. Sci., 2015, vol. 108, no. 10, pp. 1910–1914.Google Scholar
  18. 18.
    Baei, M.T., Comput. Theor. Chem., 2013, vol. 1024, pp. 28–33.CrossRefGoogle Scholar
  19. 19.
    Seifert, G., Fowler, R.W., Mitchell, D., et al., Chem. Phys. Lett., 1997, vol. 268, pp. 352–358.CrossRefGoogle Scholar
  20. 20.
    Schmidt, M.W., Baldridge, K.K., Boatz, J.A., et al., J. Comput. Chem., 1993, vol. 14, pp. 1347–1363.CrossRefGoogle Scholar
  21. 21.
    Oku, T., Nishiwaki, A., and Narita, I., Sci. Technol. Adv. Mater., 2004, vol. 5, pp. 635–638.CrossRefGoogle Scholar
  22. 22.
    Kaya, E.N., Tuncel, S., Basova, T.V., et al., Sens._Actuators B, 2014, vol. 199, pp. 277–283.CrossRefGoogle Scholar
  23. 23.
    Bahrami, A., Seidi, S., Baheri, T., and Aghamohammadi, M., Superlatt. Microstruct., 2013, vol. 64, pp. 265–273.CrossRefGoogle Scholar
  24. 24.
    Esrafili, M.D. and Nurazar, R., Superlatt. Microstruct., 2014, vol. 67, pp. 54–60.CrossRefGoogle Scholar
  25. 25.
    Walker, M., Harvey, A.J.A., Sen, A., and Dessent, C.E.H., J. Phys. Chem. A, 2013, vol. 117, no. 47, pp. 12590–12600.CrossRefGoogle Scholar
  26. 26.
    Lynam, M.M., Kuty, M., Damborsky, J., et al., Environ. Toxicol. Chem., 1998, vol. 17, no. 6, pp. 988–997.CrossRefGoogle Scholar
  27. 27.
    Ahmadi, R. and Pirahan-Foroush, M., Ann. Med. Health Sci. Res., 2014, vol. 12, pp. 39-43.Google Scholar
  28. 28.
    Shakerzadeh, E., Barazesh, N., and Zargar Talebi, S., Superlatt. Microstruct., 2014, vol. 76, pp. 264–276.CrossRefGoogle Scholar
  29. 29.
    Baei, M.T., Soltani, A., Torabi, P., and Hashemian, S., Monatsh. Chem., 2015, vol. 146, no. 6, pp. 891–896.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Department of Chemistry, Doroud BranchIslamic Azad UniversityDoroudIran

Personalised recommendations