Advertisement

Russian Journal of Applied Chemistry

, Volume 89, Issue 7, pp 1132–1136 | Cite as

Determination of the latex particle size in emulsion polymerization of methyl methacrylate with low emulsifier concentrations

  • B. B. Troitskii
  • A. A. Lokteva
  • V. N. Denisova
  • M. A. Novikova
  • A. N. Konev
  • I. L. Fedyushkin
Macromolecular Compounds and Polymeric Materials
  • 42 Downloads

Abstract

The mean size of the latex particles formed in emulsion polymerization of methyl methacrylate under definite conditions (water: monomer volume ratio 15: 1, 80°C, potassium persulfate concentration 0.07 wt %) decreases from 200 to 9–10 nm as the concentration of an ionic surfactant (anionic Disponil AES 60, SDS, cationic C19H42BrN) is increased from 0.0 to 1.0 wt %. The nonionic surfactants studied influence the size of the latex particles formed differently: with ALM-10, the particle size decreases from 200 to 150–190 nm, whereas with ALM-7 and ALM-2 it increases from 200 to 320 nm as the surfactant concentration is increased from 0.0 to 1.0 wt %. An increase in the concentration of F127 amphiphilic ternary block copolymer from 0.0 to 1.0 wt % leads to a monotonic decrease in the size of the poly(methyl methacrylate) latex particles formed from 200 to 53 nm.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Eliseeva, V.I., Ivanchev, S.S., Kuchanov, S.I., and Lebedev, A.V., Emul’sionnaya polimerizatsiya i ee primenenie v promyshlennosti (Emulsion Polymerization and Its Use in Industry), Moscow Khimiya, 1976.Google Scholar
  2. 2.
    Eliseeva, V.I., Polimernye dispersii (Polymer Dispersions), Moscow Khimiya, 1980.Google Scholar
  3. 3.
    Ivanchev, S.S., Radikal’naya polimerizatsiya (Radical Polymerization), Leningrad: Khimiya, 1985, pp. 115–137.Google Scholar
  4. 4.
    Chern, C.S., Prog. Polym. Sci., 2006, vol. 31, no. 5, pp. 443–486.CrossRefGoogle Scholar
  5. 5.
    Thickett, S.C. and Gilbert, R.G., Polymer, 2007, vol. 48, no. 24, pp. 6965–6991.CrossRefGoogle Scholar
  6. 6.
    Zetterlund, P.B., Thickett, S.C., Perrier, S., et al., Chem. Rev., 2015, vol. 115, no. 18, pp. 9745–9800.CrossRefGoogle Scholar
  7. 7.
    Furumi, S., J. Mater. Chem. C, 2013, vol. 1, no. 38, pp. 6003–6012.CrossRefGoogle Scholar
  8. 8.
    Bao, Y., Shi, C., Wang, T., et al., Micropor. Mesopor. Mater., 2016, vol. 227, June, pp. 121–136.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • B. B. Troitskii
    • 1
  • A. A. Lokteva
    • 1
  • V. N. Denisova
    • 1
  • M. A. Novikova
    • 1
  • A. N. Konev
    • 1
  • I. L. Fedyushkin
    • 1
  1. 1.Razuvaev Institute of Organometallic ChemistryRussian Academy of SciencesNizhny NovgorodRussia

Personalised recommendations