Advertisement

Russian Journal of Applied Chemistry

, Volume 89, Issue 6, pp 955–959 | Cite as

A new approach to preparation of granulated materials based on chitosan and its imidazole derivative

  • A. V. Pestov
  • O. V. Koryakova
  • Yu. O. Privar
  • S. Yu. Bratskaya
Various Technological Processes

Abstract

A new approach to preparation of granulated materials based on chitosan and N-(5-methyl-4-imidazolyl)- methyl chitosan was developed. The procedure is simple and efficient and involves the use of glutaraldehyde as cross-linking agent without using precipitants. The composition and structural features of the materials obtained were determined by elemental analysis and Fourier IR spectroscopy. The dependence of the degree of material swelling on the degree of functionalization with glutaraldehyde was determined. The polymer granules were used as support for Pd0-containing catalysts for reduction of organic compounds.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Moulay, S., Prog. Polym. Sci., 2010, vol. 35, pp. 303–331.CrossRefGoogle Scholar
  2. 2.
    Pestov, A.V. and Bratskaya, S.Yu., Molecules, 2016, vol. 21, no. 3, pp. 330–364.CrossRefGoogle Scholar
  3. 3.
    Sonina, A.N., Uspenskii, S.A., Vikhoreva, G.A., et al., Fibre Chem., 2011, vol. 42, no. 6, pp. 350–358.CrossRefGoogle Scholar
  4. 4.
    Lakshmi, S.N. and Cato, T.L., Prog. Polym. Sci., 2007, vol. 32, pp. 762–798.CrossRefGoogle Scholar
  5. 5.
    Kim, I.-Y., Seo, S.-J., Moon, H.-S., et al., Biotechnol. Adv., 2008, vol. 26, pp. 1–21.CrossRefGoogle Scholar
  6. 6.
    Apryatina, K.V., Mochalova, A.E., Gracheva, T.A., et al., Polym. Sci., Ser. B, 2015, vol. 57, no. 2, pp. 145–149.CrossRefGoogle Scholar
  7. 7.
    Wang, J. and Chen, C., Bioresource Technol., 2014, vol. 160, pp. 129–141.CrossRefGoogle Scholar
  8. 8.
    Pestov, A.V., Koryakova, O.V., Leonidov, I.I., and Yatluk, Yu.G., Russ. J. Appl. Chem., 2011, vol. 83, no. 5, pp. 787–794.CrossRefGoogle Scholar
  9. 9.
    Guibal, E., Vincent, T., and Navarro, R., J. Mater. Sci., 2014, vol. 49, pp. 5505–5518.CrossRefGoogle Scholar
  10. 10.
    Kayser, H., Pienkoss, F., and Dominguez de Maria, P., Fuel, 2014, vol. 116, pp. 267–272.CrossRefGoogle Scholar
  11. 11.
    Gazi, M. and Shahmohammadi, S., React. Funct. Polym., 2012, vol. 72, no. 10, pp. 680–686.CrossRefGoogle Scholar
  12. 12.
    Taha, A., Shamsuddin, M., and Alizadeh, A., J. Appl. Sci., 2014, vol. 14, no. 21, pp. 2843–2848.CrossRefGoogle Scholar
  13. 13.
    Eser, A., Nuket, T.V., Aydemir, T., et al., Chem. Eng. J., 2012, vol. 210, pp. 590–596.CrossRefGoogle Scholar
  14. 14.
    Osifo, P.O., Webster, A., Merwe, H. van der, et al., Bioresource Technol., 2008, vol. 99, no. 15, pp. 7377–7382.CrossRefGoogle Scholar
  15. 15.
    Altun, G.D. and Cetinus, S.A., Food Chem., 2006, vol. 100, no. 3, pp. 964–971.CrossRefGoogle Scholar
  16. 16.
    Kulkarni, V.H., Kulkarni, P.V., and Keshavayya, J., J. Appl. Polym. Sci., 2007, vol. 103, no. 1, pp. 211–217.CrossRefGoogle Scholar
  17. 17.
    Fu, C.-C., Hung, T.-C., Su, C.-H., et al., Polym. Int., 2011, vol. 60, no. 6, pp. 957–962.CrossRefGoogle Scholar
  18. 18.
    Zeng, L.-X., Chen, Y.-F., and Zhang, Q.-Y., Desalin. Water Treat., 2014, vol. 52, pp. 7733–7742.CrossRefGoogle Scholar
  19. 19.
    Suguna, M., Kumar, N.S., and Reddy, A.S., Can. J. Chem. Eng., 2011, vol. 89, no. 4, pp. 833–843.CrossRefGoogle Scholar
  20. 20.
    Gamzazade, A.I., Slimak, V.M., Skljar, A.M., et al., Acta Polym., 1985, vol. 36, pp. 420–424.CrossRefGoogle Scholar
  21. 21.
    Pestov, A.V., Ezhikova, M.A., Kodess, M.I., et al., Russ. J. Appl. Chem., 2014, vol. 87, no. 1, pp. 82–87.CrossRefGoogle Scholar
  22. 22.
    Perminov, P.A., Kil’deeva, N.R., Timofeeva, L.M., et al., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2007, vol. 50, no. 3, pp. 53–56.Google Scholar
  23. 23.
    Kildeeva, N.R., Perminov, P.A., Vladimirov, L.V., et al., Russ. J. Bioorg. Chem., 2009, vol. 35, no. 3, pp. 360–369.CrossRefGoogle Scholar
  24. 24.
    Poon, L., Wilson, L.D., and Headley, J.V., Carbohydr. Polym., 2014, vol. 109, pp. 92–101.CrossRefGoogle Scholar
  25. 25.
    Pestov, A.V., Zhuravlev, N.A., and Yatluk, Yu.G., Russ. J. Appl. Chem., 2007, vol. 80, no. 7, pp. 1154–1159.CrossRefGoogle Scholar
  26. 26.
    Pestov, A.V., Bratskaya, S.Yu., Azarova, Yu.A., et al., Russ. J. Appl. Chem., 2011, vol. 84, no. 4, pp. 713–718.CrossRefGoogle Scholar
  27. 27.
    Muzzarelli, R.A.A., Tanfani, T., Emanuelli, M., and Mariotti, S., Carbohydr. Res., 1982, vol. 107, pp. 199–214.CrossRefGoogle Scholar
  28. 28.
    Baba, Y., Kawano, Y., and Hirakawa, H., Bull. Chem. Soc. Jpn., 1996, vol. 69, pp. 1255–1260.CrossRefGoogle Scholar
  29. 29.
    Veleshko, I.E., Nikonorov, V.V., Veleshko, A.N., et al., Fibre Chem., 2011, vol. 42, no. 6, pp. 364–369.CrossRefGoogle Scholar
  30. 30.
    Park, S.-I., Kwak, I.S., Won, S.W., and Yun, Y.-S., J. Hazard. Mater., 2013, vols. 248–249, pp. 211–218.CrossRefGoogle Scholar
  31. 31.
    Schüßler, S., Blaubach, N., and Stolle, A., Appl. Catal. A, 2012, vols. 445–446, pp. 231–238.CrossRefGoogle Scholar
  32. 32.
    Murugadossa, A., Goswami, P., Paul, A., and Chattopadhyay, A., J. Mol. Catal. A, 2009, vol. 304, pp. 153–158.CrossRefGoogle Scholar
  33. 33.
    Pestov, A.V., Bratskaya, S.Yu., Azarova, Yu.A., and Yatluk, Yu.G., Russ. Chem. Bull., 2012, vol. 61, no. 10, pp. 1959–1964.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • A. V. Pestov
    • 1
    • 2
  • O. V. Koryakova
    • 1
  • Yu. O. Privar
    • 2
  • S. Yu. Bratskaya
    • 2
  1. 1.Postovskii Institute of Organic Synthesis, Ural BranchRussian Academy of SciencesYekaterinburgRussia
  2. 2.Institute of Chemistry, Far Eastern BranchRussian Academy of SciencesVladivostokRussia

Personalised recommendations