Russian Journal of Applied Chemistry

, Volume 89, Issue 6, pp 851–856 | Cite as

Prenucleation formations in control over synthesis of CoFe2O4 nanocrystalline powders

Inorganic Synthesis and Industrial Inorganic Chemistry

Abstract

Nanocrystalline cobalt ferrite powders were synthesized by hydrothermal treatment of co-precipitated hydroxides in the conditions of an external heating of the autoclave and under microwave heating of the reaction medium. In the microwave-heating mode, the prenucleation clusters formed under ultrasonic treatment of a suspended mixture of cobalt and iron hydroxides is transformed into CoFe2O4 nanocrystals during the first minute of synthesis at a temperature satisfying the equilibrium-existence conditions of cobalt ferrite. In the case of a slow external heating of the autoclave, there is no effect of this kind, which is attributed to the disintegration of the prenucleation clusters before the dehydration of the hydroxides to give crystalline cobalt ferrite becomes thermodynamically favorable. The main factor determining the increase in the formation rate of crystallites of CoFe2O4 nanopowders and the decrease in their size is the generation of prenucleation centers in the starting mixture of cobalt and iron hydroxides.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amiri, S. and Shokrollahi, H., Mater. Sci. Eng., C, 2013, vol. 33, no. 1, pp. 1–8.CrossRefGoogle Scholar
  2. 2.
    Munjal, S., Khare, N., Nehate, C., and Koul, V., J. Magn. Magn. Mater., 2016, vol. 404, pp. 166–169.CrossRefGoogle Scholar
  3. 3.
    Wang, G., Ma, Y., Mu, J., et al., Appl. Surf. Sci., 2016, vol. 365, pp. 114–119.CrossRefGoogle Scholar
  4. 4.
    Joshi, H.M., Lin, Y.P., Aslam, M., et al., J. Phys. Chem. C, 2009, vol. 113, pp. 17761–17767.CrossRefGoogle Scholar
  5. 5.
    Verde, E.L., Landi, G.T., Gomes, J.A., et al., J. Appl. Phys., 2012, vol. 111, pp. 123902.CrossRefGoogle Scholar
  6. 6.
    Park, B.J., Choi, K.H., Nam, K.C., et al., J. Biomed. Nanotechnol., 2015, vol. 11, pp. 226–235.CrossRefGoogle Scholar
  7. 7.
    Xiangfeng, C., Dongli, J., Yu, G., and Chenmou, Z., Sens. Actuators B, 2006, vol. 120, no. 1, pp. 177–181.CrossRefGoogle Scholar
  8. 8.
    Kumbhar, V.S., Jagadale, A.D., Shinde, N.M., and Lokhande, C.D., Appl. Surf. Sci., 2012, vol. 259, pp. 39–43.CrossRefGoogle Scholar
  9. 9.
    Mathew, D.S. and Juang, R.S., Chem. Eng. J., 2007, vol. 129, pp. 51–65.CrossRefGoogle Scholar
  10. 10.
    Kim, Y.I., Kim, D., and Lee, C.S., Phys. B, 2003, vol. 337, pp. 42–51.CrossRefGoogle Scholar
  11. 11.
    Manova, E., Kunev, B., Paneva, D., et al., Chem. Mater., 2004, vol. 16, pp. 5689–5692.CrossRefGoogle Scholar
  12. 12.
    Lavela, P. and Tirado, J.L., J. Power Sources, 2007, vol. 172, pp. 379–387.CrossRefGoogle Scholar
  13. 13.
    Saffari, J., Ghanbari, D., Mir, N., and Khandan-Barani, K., J. Ind. Eng. Chem., 2014, vol. 20, pp. 4119–4123.CrossRefGoogle Scholar
  14. 14.
    Baranchikov, A.Y., Ivanov, V.K., and Tretyakov, Yu.D., Russ. Chem. Rev., 2007, vol. 76, no. 2, pp. 133–151.CrossRefGoogle Scholar
  15. 15.
    Solanki, N., Khatri, H., and Jotania, R.B., AIP Conf. Proc., 2016, vol. 1728, pp. 020035-1–020035-4.CrossRefGoogle Scholar
  16. 16.
    Ahmed, M.A., Okasha, N., Mansour, S.F., and El-dek, S.I., J. Alloys Compd., 2010, vol. 496, pp. 345–350.CrossRefGoogle Scholar
  17. 17.
    Komarneni, S., Current Sci., 2003, vol. 85, no. 12, pp. 1730–1734.Google Scholar
  18. 18.
    Bousquet-Berthelin, C., Chaumont, D., and Stuerga, D., J. Solid State Chem., 2008, vol. 181, no. 3, pp. 616–622.CrossRefGoogle Scholar
  19. 19.
    Balakhonov, S.V., Ivanov, V.K., Barantchikov, A.E., and Churagulov, B.R., Nanosyst.: Phys., Chem., Math., 2012, vol. 3, no. 4, pp. 66–74.Google Scholar
  20. 20.
    Lee, J.-H., Kim, C.-K., Katoh, S., and Murakami, R., J. Alloys Compd., 2001, vol. 325, nos. 1–2, pp. 276–280.CrossRefGoogle Scholar
  21. 21.
    Seema Verma, Joy, P.A., Khollam, Y.B., et al., Mater. Lett., 2004, vol. 58, no. 6, pp. 1092–1095.CrossRefGoogle Scholar
  22. 22.
    Kuznetsova, V.A., Almjasheva, O.V., and Gusarov, V.V., Glass Phys. Chem., 2009, vol. 35, no. 2, pp. 205–209.CrossRefGoogle Scholar
  23. 23.
    Baranchikov, A.E., Ivanov, V.K., and Tret’yakov, Y.D., Dokl. Chem., 2012, vol. 447, no. 1, pp. 241–243.CrossRefGoogle Scholar
  24. 24.
    Lebedev, V.A., Gavrilov, A.I., Shaporev, A.S., et al., Dokl. Chem., 2012, vol. 444, no. 1, pp. 117–119.CrossRefGoogle Scholar
  25. 25.
    Dolgopolova, E.A., Ivanova, O.S., Ivanov, V.K., et al., Russ. J. Inorg. Chem., 2012, vol. 57, no. 10, pp. 1303–1307.CrossRefGoogle Scholar
  26. 26.
    Komlev, A.A. and Ilhan, S., Nanosyst.: Phys., Chem., Math., 2012, vol. 3, no. 4, pp. 114–121.Google Scholar
  27. 27.
    Gusarov, V.V., Russ. J. Gen. Chem., 1997, vol. 67, no. 12, pp. 1959–1964.Google Scholar
  28. 28.
    Pozhidaeva, O.V., Korytkova, E.N., Romanov, D.P., and Gusarov, V.V., Russ. J. Gen. Chem., 2002, vol. 72, no. 6, pp. 849–853.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.St. Petersburg State Electrotechnical University LETISt. PetersburgRussia
  2. 2.Ioffe Physical Technical InstituteRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations