Russian Journal of Applied Chemistry

, Volume 89, Issue 3, pp 343–353 | Cite as

Characteristics optimization of activated alumina desiccants based on product of a centrifugal thermal activation of gibbsite

  • V. V. DanilevichEmail author
  • L. A. Isupova
  • I. G. Danilova
  • R. A. Zotov
  • V. A. Ushakov
Inorganic Synthesis and Industrial Inorganic Chemistry


Activated alumina desiccants modified with NaOH and KOH were synthesized from the product of a centrifugal thermal activation of gibbsite, with the subsequent hydration in an acid or alkaline medium, and their properties were studied. It was shown that the modification makes it possible to raise the dynamic capacity of desiccants produced from pseudoboehmite by up to a factor of 2 via formation of new super-strong basic centers the concentration of which grows with increasing content of an alkaline oxide. A correlation was found between the total concentration of basic centers on the surface of the desiccants and their dynamic capacity in drying of both dry and humid air. Use of the modified desiccants with high static and dynamic capacity will make it possible to improve the drying efficiency.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dabrowski, A., Adv. Colloid Interface Sci., 2001, vol. 93, nos. 1–3, pp. 135–224.CrossRefGoogle Scholar
  2. 2.
    Sircar, S., Rao, M.B., and Golden, T.C., Stud. Surf. Sci. Catal., 1999, vol. 120, pp. 395–423.CrossRefGoogle Scholar
  3. 3.
    Fleming, H.L., Stud. Surf. Sci. Catal., 1999, vol. 120, pp. 561–585.CrossRefGoogle Scholar
  4. 4.
    Stiles A.B., Catalyst Supports and Supported Catalysts: Theoretical and Applied Concepts, Boston: Butterworths, 1987.Google Scholar
  5. 5.
    Zotov, R.A., Glazyrin, A.A., Danilevich, V.V., et al., Kinet. Catal., 2012, vol. 53, no. 5, pp. 570–576.CrossRefGoogle Scholar
  6. 6.
    Danilevich, V.V., Isupova, L.A., Kagyrmanova, A.P., et al., Kinet. Catal., 2012, vol. 53, no. 5, pp. 632–639.CrossRefGoogle Scholar
  7. 7.
    Danilevich, V.V., Isupova, L.A., Pauk shtis, E.A., and Ushakov, V.A., Kinet. Catal., 2014, vol. 55, no. 3, pp. 372–379.CrossRefGoogle Scholar
  8. 8.
    Ducreux, O., Lavigne, C., and Nedez, C., Air and Gas Drying with Activated Alumina. 2014 Scholar
  9. 9.
    Danilevich, V.V., Lakhmostov, V.S., Zakharov, V.P., et al., Kataliz Prom–sti, 2016, vol. 16, no. 1, pp. 13–28.CrossRefGoogle Scholar
  10. 10.
    Shkrabina, R.A., Vorob’ev, Yu.K., Moroz, E.M., et al., Kinet. Kataliz, 1981, vol. 22, pp. 1080–1081.Google Scholar
  11. 11.
    Gregg, S.J. and Sing, K.S.W., Adsorption, Surface Area, and Porosity, London: Acad. Press, 1982, 2nd ed.Google Scholar
  12. 12.
    Fenelonov, V.B., Vvedenie v fizicheskuyu khimiyu formirovaniya supramolekulyarnoi struktury adsorbentov i katalizatorov (Introduction to Physical Chemistry of Formation of a Supramolecular Structure of Adsorbents and Catalysts), Novosibirsk: Sib. Otd. Ross. Akad. Nauk, 2004.Google Scholar
  13. 13.
    Paukshtis, E.A., Infrakrasnaya spektroskopiya v geterogennom kislotno-osnovnom katalize (IR Spectroscopy in Heterogeneous Acid-Base Catalysis), Novosibirsk: Nauka, 1992.Google Scholar
  14. 14.
    Fripiat, J.J., Bosmans, H., and Rouxhet, P.G., J. Phys. Chem., 1967, vol. 71, no. 4, pp. 1097–1111.CrossRefGoogle Scholar
  15. 15.
    Boehm, H.-P., Angew. Chem., 1966, vol. 5, no. 6, pp. 533–544.CrossRefGoogle Scholar
  16. 16.
    Paukshtis, E.A., Soltanov, P.I., Yurchenko, E.N., and Jiratova, K., Collect. Czech. Chem. Commun., 1982, vol. 47, p. 2044.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • V. V. Danilevich
    • 1
    • 2
    Email author
  • L. A. Isupova
    • 1
    • 2
  • I. G. Danilova
    • 1
    • 2
  • R. A. Zotov
    • 1
  • V. A. Ushakov
    • 2
  1. 1.Tomsk State UniversityTomskRussia
  2. 2.Boreskov Institute of Catalysis, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations