Russian Journal of Applied Chemistry

, Volume 88, Issue 2, pp 197–207 | Cite as

Effect of kinetic features in synthesis of hybrid copolymers based on Ti(OPri)4 and hydroxyethyl methacrylate on their structure and properties

  • E. V. Salomatina
  • A. N. Moskvichev
  • A. V. Knyazev
  • L. A. Smirnova
Inorganic Synthesis and Industrial Inorganic Chemistry


Effect of synthesis conditions on the structure and optical properties of hybrid copolymers based on Ti(OPri)4 and hydroxyethyl methacrylate was determined. Raising the concentration of the methacrylic monomer in the system leads to a longer hydrolytic polycondensation of titanium alkoxide and faster radical polymerization of the organic monomer. Copolymers containing poly(titanium oxide) with a nearly anatase structure were obtained in the conditions of a double-stage synthesis including successive stages of low-temperature hydrolytic polycondensation and polymerization. In the case of a single-stage synthesis at 70°C, which combines simultaneously occurring polycondensation and polymerization processes, the copolymer contains the anatase (75%) and rutile (25%) forms of poly(titanium oxide).


Radical Polymerization Polycondensation HEMA Vinyl Monomer Ethyl Methacrylate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pomogailo, A.D., Rozenberg, A.S., and Uflyand, I.E., Nanochastitsy metallov v polimerakh (Metal Nanoparticles in Polymers), Moscow: Khimiya, 2000.Google Scholar
  2. 2.
    Srisitthiratkul, Ch., Pongsorrarith V., and Intasanta, N., Appl. Surf. Sci., 2011, vol. 257, no. 21, pp. 8850–8856.CrossRefGoogle Scholar
  3. 3.
    Wang, X., Hou, X., Luan, W., et al., Appl. Surf. Sci., 2012, vol. 258, no. 20, pp. 8241–8246.CrossRefGoogle Scholar
  4. 4.
    Kubacka, A., Ferrer, M., Fernandez-Garcia, M., et al., Appl. Catal. B, 2011, vol. 104, nos. 3–4, pp. 346–352.CrossRefGoogle Scholar
  5. 5.
    Ravirajan, P., Bradley, D., Nelson, J., et al., Appl. Phys. Lett., 2005, vol. 86, no. 14, pp. 143101.CrossRefGoogle Scholar
  6. 6.
    Zeng, T.-W., Lo, H.-H., Chang, Ch.-H., et al., Sol. Energy Mater. Sol. Cells, 2009, vol. 93, nos. 6–7, pp. 952–957.CrossRefGoogle Scholar
  7. 7.
    Huisman, C.L., Schoonman, J., and Goossens, A., Sol. Energy Mater. Sol. Cells, 2005, vol. 85, no. 115, pp. 115–124.Google Scholar
  8. 8.
    Museur, L., Gorbovyi, P., Traore, M., et al., J. Lumin., 2012, vol. 132, no. 5, pp. 1192–1199.CrossRefGoogle Scholar
  9. 9.
    Liang, Y., Dvornikov, A.S., and Rendzepis, P.M., Opt. Comm., 2003, vol. 223, nos. 1–3, pp. 61–66.CrossRefGoogle Scholar
  10. 10.
    Reyes-Esqueda, J.-A., Vebreb, L., Lecaque, R., et al., Opt. Comm., 2003, vol. 220, nos. 1–3, pp. 59–66.CrossRefGoogle Scholar
  11. 11.
    Sarantopoulos, Ch., Puzenat, E., Guillard, Ch., et al., Appl. Catal. B, 2009, vol. 91, nos. 1–2, pp. 225–233.CrossRefGoogle Scholar
  12. 12.
    Huang, X., Yuan, J., Shi, J., et al., J. Hazard. Mater., 2009, vol. 171, nos. 1–3, pp. 827–832.CrossRefGoogle Scholar
  13. 13.
    Ao, C.H., Lee, S.C., and Yu, J.C., J. Photochem. Photobiol., A, 2003, vol. 156, nos. 1–3, pp. 171–177.CrossRefGoogle Scholar
  14. 14.
    Nakata, K. and Fujishimaa, A., J. Photochem. Photobiol., C, 2012, vol. 13, no. 3, pp. 169–189.CrossRefGoogle Scholar
  15. 15.
    Sanchez, C., Soler-Illia, G.J., Ribot, F., et al., Chem. Mater., 2001, vol. 13, no. 10, pp. 3061–3083.CrossRefGoogle Scholar
  16. 16.
    Rozes, L. and Sanchez, C., Chem. Soc. Rev., 2011, vol. 40, no. 2, pp. 1006–1030.CrossRefGoogle Scholar
  17. 17.
    Kallala, M., Sanchez, C., and Cabane, B., Phys. Rev. E, 1993, vol. 48, no. 5, pp. 3692–3704.CrossRefGoogle Scholar
  18. 18.
    Bityurin, N., Znaidi, L., and Kanaev, A., Chem. Phys. Lett., 2003, vol. 374, nos. 1–2, pp. 95–99.CrossRefGoogle Scholar
  19. 19.
    Kuznetsov, A.I., Kameneva, O., Alexandrov, A., et al., Phys. Rev. E, 2005, vol. 71, no. 2, pp. 021403-1–021403-7.CrossRefGoogle Scholar
  20. 20.
    Bityurin, N., Kuznetsov, A.I., and Kanaev, A., Appl. Surf. Sci., 2005, vol. 248, nos. 1–4, pp. 86–90.CrossRefGoogle Scholar
  21. 21.
    Savenije, T.J., Vermeulen, M.J.W., Haas, M.P., et al., Sol. Energy Mater. Sol. Cells., 2000, vol. 61, no. 1, pp. 9–18.CrossRefGoogle Scholar
  22. 22.
    Kameneva, O.V., Kuznetsov, A.I., Smirnova, L.A., et al., Doklady Akad. Nauk, 2006, vol. 407, no. 1, pp. 29–31.Google Scholar
  23. 23.
    Salomatina, E.V., Bityurin, N.M., Gulenova, M.V., et al., J. Mater. Chem. C, 2013, vol. 1, pp. 6375–6385.CrossRefGoogle Scholar
  24. 24.
    Kickelbick, G., Prog. Polym. Sci., 2003, vol. 28, pp. 83–114.CrossRefGoogle Scholar
  25. 25.
    Schubert, U., Chem. Soc. Rev., 2011, vol. 40, pp. 587–582.CrossRefGoogle Scholar
  26. 26.
    Mehrotra, R.C., Inorg. Chim. Acta. Rev., 1967, vol. 1, pp. 99–112.CrossRefGoogle Scholar
  27. 27.
    Golubko, N.V., Yanovskaya, M.I., and Romm, I.P., et al., J. Sol-Gel Sci. Tech., 2001, vol. 20, pp. 245–262.CrossRefGoogle Scholar
  28. 28.
    Pierre, A.S., Introduction to Sol-Gel Processing., Int. Ser. in Sol-Gel Processing: Technology and Applications, Dordrecht, 1998.CrossRefGoogle Scholar
  29. 29.
    Kostin, A.S. and Kol’tsova, E.M., Fundamental’n. Issled., 2012, no. 9-2, pp. 381–387.Google Scholar
  30. 30.
    Mehrotra, R.C., J. Non-Cryst. Solids, 1990, vol. 121, nos. 1–3, pp. 1–6.CrossRefGoogle Scholar
  31. 31.
    Barringer, E.A. and Bowen, H.K., Langmuir, 1985, vol. 1, no. 4, pp. 414–420.CrossRefGoogle Scholar
  32. 32.
    Damm, C., J. Photochem. Photobiol. A: Chem., 2006, vol. 181, nos. 2–3, pp. 297–305.CrossRefGoogle Scholar
  33. 33.
    Kabachii, Yu.A., Kochev, S.Yu., Blagodatskikh, I.V., et al., Polym. Sci., Ser. B., 2003, vol. 45, nos. 9–10, pp. 272–276.Google Scholar
  34. 34.
    Moskvichev, A.N. and Moskvichev, A.A., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2007, vol. 50, no. 3, pp. 69–71.Google Scholar
  35. 35.
    Afanas’ev, A.V., Moskvichev, A.N., Moskvichev, A.A., et al., Vestn. Nizhni Novgorod Gos. Univ., 2008, no. 3, pp. 60–64.Google Scholar
  36. 36.
    Moskvichev, A.N. and Moskvichev, A.A., Tr. Nizhegorod Gos. Tekh. Univ., Khim. Khim. Biotekhnol., 2007, vol. 80, no. 1, pp. 223–229.Google Scholar
  37. 37.
    Lushcheikin, G.A., Metody issledovaniya elektricheskikh svoistv polimerov (Methods for Study of Electrical Properties of Polymers), Moscow: Khimiya, 1988.Google Scholar
  38. 38.
    Chernov, I.A., Novikov, G.F., Dzhardimalieva, G.I., et al., Polym. Sci., Ser. A, 2007, vol. 49, no. 3, pp. 267–274.CrossRefGoogle Scholar
  39. 39.
    Novitskii, S.P., Kenzin, V.I., and Voloshin, A.A., Elektrokhimiya, 1993, vol. 29, no. 1, pp. 138–143.Google Scholar
  40. 40.
    Barsucov, Ye. and Macdonald, R., Characterization of Materials, Kaufmann, E.N., Ed., John Wiley & Sons, 2012.Google Scholar
  41. 41.
    Damaskin, B.B. and Petrii, O.A., Vvedenie v elektrokhimicheskuyu kinetiku (Introduction to Electrochemical Kinetics), Moscow: Vysshaya Shkola, 1983.Google Scholar
  42. 42.
    Rodin, D.L., Solopchenko, A.V., Kepman, A.V., et al., Butlerov. soobshch., 2013, vol. 35, no. 8, pp. 31–41.Google Scholar
  43. 43.
    Rozenberg, B.A., Boiko, G.N., Bogdanova, L.M., et al., Polym. Sci. Ser. A, 2003, vol. 45, no. 9, pp. 819–825.Google Scholar
  44. 44.
    Arulin, V.I. and Efimov, L.I., Trudy Khim. Khim. Tekhnol., 1970, no. 2, pp. 74–77.Google Scholar
  45. 45.
    Metody analiza akrilatov i metakrilatov (Methods for Analysis of Acrylates and Methacrylates), Moscow: Khimiya, 1972.Google Scholar
  46. 46.
    Lipatov, Yu.S., Spravochnik po khimii polimerov (Handbook of Polymer Chemistry), Kiev: Naukova Dumka, 1971.Google Scholar
  47. 47.
    Solov’eva, L.M., Elektrodnye protsessy v galogenidnykh i okisnykh elektrolitakh (Electrode Processes in Halide and Oxide Electrolytes), Sverdlovsk: Ural. Nauchn. Tsentr Akad. Nauk SSSR, 1981, pp. 68–82.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • E. V. Salomatina
    • 1
  • A. N. Moskvichev
    • 2
  • A. V. Knyazev
    • 1
  • L. A. Smirnova
    • 1
  1. 1.Lobachevsky State University of Nizhni NovgorodNizhni NovgorodRussia
  2. 2.Institute for Problems of Machine BuildingRussian Academy of SciencesNizhni NovgorodRussia

Personalised recommendations