Advertisement

Russian Journal of Applied Chemistry

, Volume 87, Issue 3, pp 360–364 | Cite as

Synthesis of porous carbon materials from wood waste pre-treated with water

  • S. I. Tsyganova
  • I. V. Korol’kova
  • O. Yu. Fetisova
  • G. N. Bondarenko
  • V. F. Kargin
  • S. I. Tsyganova
  • I. V. Korol’kova
  • O. Yu. Fetisova
  • G. N. Bondarenko
  • V. F. Kargin
Various Technological Solutions

Abstract

The possibility of producing porous carbon materials from birch sawdust exposed to natural decomposition in water was demonstrated. It was established that the carbon material carbonized at 800°C was of a specific surface area nearly by one order of magnitude higher than that of a product produced using ordinary sawdust under the same conditions. It was suggested that developing porous structure of the carbon product was due to structural changes in wood mainly by reducing an amount of α-cellulose and its interaction with water.

Keywords

Lignin Water Treatment Sawdust Carbon Product Wood Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lionetto, F., Del Sole, R., Cannoletta, D., et al., Materials, 2012, vol. 5, pp. 1910–1922.CrossRefGoogle Scholar
  2. 2.
    Dobrică, I., Bugheanu, P., Stănculescu, I., et al., Analele Universitătii din Bucureşti — Chimie, 2008, Anul 17, vol. 1, pp. 33–37.Google Scholar
  3. 3.
    Marsh, H. and Rodriguez-Reinoso, F., Activated Carbon, Elsevier Ltd, 2006.Google Scholar
  4. 4.
    Tsyganova, S.I., Korol’kova, I.V., Bondarenko, G.V., and Kargin, V.F., Russ. J. Appl. Chem., 2011, vol. 84, no. 11, pp. 1997–2001.CrossRefGoogle Scholar
  5. 5.
    Azadfallah, M., Mirshokraei, S.A., Latibari, A.J., et al., Iranian Polym. J., 2008, vol. 17, no. 1, pp. 73–80.Google Scholar
  6. 6.
    Anderson, E.L., Pawlak, Z., Owen, N.L., et al., Appl. Spectrosc., 1991, vol. 45, pp. 641–647.CrossRefGoogle Scholar
  7. 7.
    Engelund, E.T., Thygesen, L.G., Svensso, S., et al., Wood Sci. Technol., 2013, vol. 47, pp. 141–161.CrossRefGoogle Scholar
  8. 8.
    Aleshina, L.A., Glazkova, S.V., Lugovskaya, L.A., et al., Khim. Rastit. Syr’ja. 2001, no. 1, pp. 5–36.Google Scholar
  9. 9.
    Manoj, B. and Kunjomana, A.G., Int. J. Electrochem. Sci., 2012, vol. 7, pp. 3127–3134.Google Scholar
  10. 10.
    Terinte, N., Ibbett, R., and Schuster, K.C., Lenzinger Berichte, 2011, vol 89, pp. 118–131.Google Scholar
  11. 11.
    Khazraji, A.C. and Robert, S., J. Nanomaterials, 2013, vol. 2013, pp. 1–10.Google Scholar
  12. 12.
    Yukhnevich, G.V., Infrakrasnaya spektroskopiya vody (IR Spectroscopy of Water), Moscow: Nauka, 1973.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • S. I. Tsyganova
    • 1
  • I. V. Korol’kova
    • 1
  • O. Yu. Fetisova
    • 1
  • G. N. Bondarenko
    • 1
  • V. F. Kargin
    • 1
  • S. I. Tsyganova
    • 1
  • I. V. Korol’kova
    • 1
  • O. Yu. Fetisova
    • 1
  • G. N. Bondarenko
    • 1
  • V. F. Kargin
    • 1
  1. 1.Institute of Chemistry and Chemical TechnologySiberian Branch of Russian Academy of SciencesKrasnoyarskRussia

Personalised recommendations