Russian Journal of Applied Chemistry

, Volume 86, Issue 5, pp 747–755 | Cite as

Optical and electro-optical properties of silicon-contaning thiophene derivatives of star-shaped and dendritic structure

  • N. P. Yevlampieva
  • A. P. Khurchak
  • Yu. N. Luponosov
  • E. A. Kleimyuk
  • S. A. Ponomarenko
  • E. I. Ryumtsev
Macromolecular Compounds and Polymeric Materials


Star-thiophene derivatives with a silicon atom as the branching center were investigated by absorption spectroscopy and electro-optical Kerr effect in solutions at variations in a number and chemical structure of branches. The star-shaped oligomers were compared with dendritic analogues containing silicon atoms at the points of branching. It is shown that thiophene-containing moieties determine both spectral and electrooptical properties of the molecules. Molecular parameters of the star-shaped oligomers of various structure vary identically with increasing the number of branches. The absorption of star-shaped oligomers is additive due to the autonomy of the absorption of radiation by the separate branches. For dendritic molecules the additive nature of the absorption is kept, but their electro-optical properties are independent of a generation number. It was shown that the latter is a consequence of the manifestation by dendrimers of deformation flexibility, which is not peculiar to the starshaped derivatives.


Oligomer Thiophene Silicon Atom Optical Polarizability Permanent Dipole Moment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Organic Electronics: Materials Manufacturing and Application, Klauk, N., Ed., Weinheim: Wiley-VCH, 2006.Google Scholar
  2. 2.
    Green, M.A., J. Mater. Sci. Mater. Electron., 2007, vol. 18, no. 1, pp. 15.CrossRefGoogle Scholar
  3. 3.
    Holcombe, T.W., Woo, C.H., Kavulak, D.F., et al., J. Am. Chem. Soc., 2009, vol. 131, no. 40, pp. 14160.CrossRefGoogle Scholar
  4. 4.
    Van Bavel, S., Sourty, E., de With, G., et al., Macromolecules, 2009, vol. 42, no. 19, pp. 7396.CrossRefGoogle Scholar
  5. 5.
    Troshin, P.A., Ponomarenko, S.A., Luponosov, Y.N., et al., Solar Energy, Materials a. Solar Cells, 2010, vol. 94,no. 12. P., 2064.CrossRefGoogle Scholar
  6. 6.
    Zhao, K., Xue, L., Liu, J., et al., Langmuir, 2010, vol. 26, no. 1, pp. 471.CrossRefGoogle Scholar
  7. 7.
    Kim, J.S., Park, Yu., Dong, Yun, Lee, et, al., Adv. Funct. Mater., 2010. V., 20, p. 540.CrossRefGoogle Scholar
  8. 8.
    Gittins, P.J. and Twyman, L.J., Supramol. Chem., 2003, vol. 15, no. 1, pp. 5.CrossRefGoogle Scholar
  9. 9.
    Ponomarenko, S., Kirchmeyer, S., Huisman, B.-H., et al., Adv. Funct. Mater., 2003, vol. 13, no. 8, pp. 591.CrossRefGoogle Scholar
  10. 10.
    Rance, W.L., Rupert, B.L., Mitchell, W.J., et al., J. Phys. Chem. C, 2010, vol. 114, pp. 22269.CrossRefGoogle Scholar
  11. 11.
    Min, J., Luponosov, Yu., Ameri, T., et al., Org. Electron., 2013, vol. 14, no. 1, pp. 219.CrossRefGoogle Scholar
  12. 12.
    Luponosov, Yu.N., Ponomarenko, S.A., Surin, N.M., and Muzafarov, A.M., Org. Lett., 2008, vol. 10, no. 13, pp. 2753.CrossRefGoogle Scholar
  13. 13.
    Ponomarenko, S.A., Rasulova, N.N., Luponosov, Y.N., et al., Macromolecules, 2012, vol. 45, no. 4. P., 2014.CrossRefGoogle Scholar
  14. 14.
    Mangold, H.S., Richter, T.V., Link, S., et al., J. Phys. Chem. B, 2012, vol. 116, no. 1, pp. 154.CrossRefGoogle Scholar
  15. 15.
    Borshchev, O.B., Ponomarenko, S.A., Kleimyuk, E.A., et al., Izv. Akad. Nauk, Ser. Khim., 2010, no. 4, p. 781.Google Scholar
  16. 16.
    Smits, E.C.P., Mathijssen, S.G.J., Van Hal, P.A. et, al., Nature, 2008, vol. 455, pp. 956.CrossRefGoogle Scholar
  17. 17.
    Zhang, F., Wu, D., Xu, Yo., and Feng, X., J. Mater. Chem., 2011, vol. 21, pp. 17590.CrossRefGoogle Scholar
  18. 18.
    Holliday, B.J. and Swager, T.M., Chem. Commun., 2005, p. 23.Google Scholar
  19. 19.
    Tsvetkov, V.N., Rigid Chain Polymers, New York: Plenum Press, 1989.Google Scholar
  20. 20.
    Stewart, J.J.P., J. Comp.-Aided Mol. Design, 1990, vol. 4, no. 1, pp. 1–105.CrossRefGoogle Scholar
  21. 21.
    Luponosov, Yu.N., Ponomarenko, S.A., Surin, N.M., et al., Chem. Materials, 2009. V. 21, no. 3, pp. 447.CrossRefGoogle Scholar
  22. 22.
    Kleimyuk, E.A., Cand. Sci (Chem.) Dissertation, Moscow, 2011.Google Scholar
  23. 23.
    HyperChem, Professional, 8.06.Google Scholar
  24. 24.
    Thompson, B.C., Khlyabich, P.P., Burkhart, B., et al., Green, 2011, vol. 1, no. 1, pp. 29–54.CrossRefGoogle Scholar
  25. 25.
    Surin, N.M., Borshchev, O.V., Luponosov, Yu.N., et al., Zh. Fiz. Khim., 2010, vol. 84, no. 11, p. 1979.Google Scholar
  26. 26.
    Yevlampieva, N.P., Khurchak, A.P., Borshchev, O.V., et al., Vysokomolekulyar. Soedin., 2011Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • N. P. Yevlampieva
    • 1
  • A. P. Khurchak
    • 1
  • Yu. N. Luponosov
    • 2
  • E. A. Kleimyuk
    • 2
  • S. A. Ponomarenko
    • 2
  • E. I. Ryumtsev
    • 1
  1. 1.St. Petersburg State UniversitySt. PetersburgRussia
  2. 2.Institute of Synthetic Polymeric MaterialsRussian Academy of SciencesMoscowRussia

Personalised recommendations