Advertisement

Russian Journal of Applied Chemistry

, Volume 86, Issue 2, pp 176–181 | Cite as

Synthesis of ɛ-caprolactone with stable hydrogen peroxide adducts

  • V. A. Kuznetsov
  • M. G. Pervova
  • Yu. G. Yatluk
Organic Synthesis and Industrial Inorganic Chemistry

Abstract

Oxidation of cyclohexanone to ɛ-caprolactone with stable industrially manufactured hydrogen peroxide derivatives: adduct with urea (urea hydrogen peroxide), sodium perborate, sodium percarbonate (Persol), magnesium monoperphthalate (Dismozon) was studied. Oxidation with urea hydrogen peroxide is the most efficient in hexafluoroisopropanol in the case of preliminary removal of urea in the form of an oxalate. Oxidation with sodium perborate and percarbonate provides high yields in trifluoroacetic acid. The lowest cost process consists in interaction with sodium monoperphthalate (Persol and phthalic anhydride) in an aqueous medium.

Keywords

Cyclohexanone Phthalic Anhydride Peroxy Acid Sodium Perborate Percarbonate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Robinson, R. and Smith, L.H., J. Chem. Soc., 1937, pp. 371–374.Google Scholar
  2. 2.
    Strukul, G., Angew. Chem. Int. Ed., 1998, vol. 37, no. 9, pp. 1198–1209.CrossRefGoogle Scholar
  3. 3.
    Berkessel, A., Andreae, M.R.M., Schmickler, H., and Lex, J., Angew. Chem. Int. Ed., 2002, vol. 41, no. 23, pp. 4481–4484.CrossRefGoogle Scholar
  4. 4.
    Zmitek, K., Stavber, S., Zupan, M., et al., Tetrahedron, 2006, vol. 62, no. 7, pp. 1479–1484.CrossRefGoogle Scholar
  5. 5.
    US Patent 4988825.Google Scholar
  6. 6.
    Kjonaas, R.A. and Clemons, A.E., J. Chem. Education, 2008, vol. 85, no. 6, pp. 827–828.CrossRefGoogle Scholar
  7. 7.
    Olah, G.A., Wang, Q., Trivedi, N.J., and Prakash, G.K.S., Synthesis, 1991, no. 9, pp. 739–740.Google Scholar
  8. 8.
    Brougham, P., Cooper, M.S., Cummerson, D.A., et al., Synthesis Comm., 1987, vol. 17, no. 8, pp. 1015–1017.CrossRefGoogle Scholar
  9. 9.
    Mino, T., Masuda, S., Nishio, M., and Yamashita, M., J. Org. Chem., 1997, vol. 62, no. 8, pp. 2633–2635.CrossRefGoogle Scholar
  10. 10.
    Tavares da Silva, E.J., Sa e Melo, M.L., Campos Neves, A.S., et al., J. Chem. Soc., Perkin Trans. 1, 1997, no. 23, pp. 3487–3489.Google Scholar
  11. 11.
    RF Patent 2174490.Google Scholar
  12. 12.
    US Patent 4403994.Google Scholar
  13. 13.
    Analiticheskaya khimiya: Metody khimicheskogo analiza (Analytical Chemistry: Methods for Chemical Analysis), Petrukhin, O.M., Ed., Moscow: Khimiya, 1992.Google Scholar
  14. 14.
    Neimann, K. and Neumann, R., Organic Lett., 2000, vol. 2, no. 18, pp. 2861–2863.CrossRefGoogle Scholar
  15. 15.
    Mlochowski, J., Peczynska-Czoch, W., Pietka-Ottlik, M., and Wojtowicz-Mlochowska, H., Open Cat. J., 2011, no. 4, pp. 54–82.Google Scholar
  16. 16.
    Zotov, A.T., Mochevina (Urea), Moscow: Goskhimizdat, 1963.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • V. A. Kuznetsov
    • 1
  • M. G. Pervova
    • 1
  • Yu. G. Yatluk
    • 1
  1. 1.Postovsky Institute of Organic Synthesis, Ural BranchRussian Academy of SciencesYekaterinburgRussia

Personalised recommendations