Advertisement

Russian Journal of Applied Chemistry

, Volume 86, Issue 2, pp 167–175 | Cite as

New products of a new method for pyrolysis of pyridine

  • A. I. Kharlamov
  • G. A. Kharlamova
  • M. E. Bondarenko
Organic Synthesis and Industrial Inorganic Chemistry

Abstract

New method for pyrolysis of pyridine is suggested. One of yielded by the method is a new type of heteroatomic molecules in the form of exohedrally hydrogenated and hydroxylated azafullerenes (C35N5)H9, (C45N5) (OH)3H14, and (C49N11)(OH)5H18. C60 fullerene, its hydrides, and new carbon molecules, such as quasi-fullerene C48 and C3-C15, are detected for the first time in pyridine pyrolysis products by mass-spectral analysis. Hydrides of the carbon molecules are synthesized for the first time without using fullerene.

Keywords

Pyrolysis Fullerene Isotopic Distribution Hydrogen Cyanide Carbon Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kumashiro, R., Tanigaki, K., Ohashi, H., et al., Appl. Phys. Lett., 2004, vol. 84, no. 12, pp. 2154–2156.CrossRefGoogle Scholar
  2. 2.
    Krainara, N., Illas, F., and Limtraku, J., Chem. Phys. Lett., 2012, vol. 537, no. 1, pp. 88–93.CrossRefGoogle Scholar
  3. 3.
    Xie, R.H., Bryant, G.W., Sun, G., et al., Phys. Rev., 2004, vol. 69, no. 20, pp. 201403–201407.Google Scholar
  4. 4.
    Trajkovic, S., Dobric, S., Jacevic, V., et al., Colloids Surf. Biointerfaces, 2007, vol. 58, no. 1, pp. 39–43.CrossRefGoogle Scholar
  5. 5.
    Melinon, P., From Small Fullerenes to Superlattices: Science and Applications, Melinon, P. and Masenelli, B., Eds., Stanford: Pan Stanford Publishing, 2012, p. 350.Google Scholar
  6. 6.
    Simon, F., Kuzmany, H., and Filip, F., Phys. Status Solidi B, 2006, vol. 243, no. 13, pp. 3263–3267.CrossRefGoogle Scholar
  7. 7.
    Cuong, N.T., Otani, M., Iizumi, Y., et al., Appl. Phys. Lett., 2011, vol. 99, no. 5, pp. 053105–053108.CrossRefGoogle Scholar
  8. 8.
    Simon, F., Kuzmany, H., Bernardi, J., et al., Carbon, 2006, vol. 44, pp. 1958–1962.CrossRefGoogle Scholar
  9. 9.
    Sandoval, L.M., Martinez, H., and Terrones, M., Chem. Phys. Lett., 2004, vol. 386, pp. 137–143.CrossRefGoogle Scholar
  10. 10.
    Lv, R., Li, Q., Botello-Mendez, A.R., et al., Sci. Reports, 2012, vol. 2, pp. 586–596.Google Scholar
  11. 11.
    Christian, J.F., Wan, Z., and Anderson, S.L., J. Phys. Chem., 1992, vol. 96, no. 26, pp. 10597–10600.CrossRefGoogle Scholar
  12. 12.
    Abate, S., Arrigo, R., Schuster, M.E.S., et al., Catal. Today, 2010, vol. 157, no. 1–4, pp. 280–285.CrossRefGoogle Scholar
  13. 13.
    Wang, X., Li, X., Zhang, L., et al., Science, 2009, vol. 324, no. 5867, pp. 768–771.CrossRefGoogle Scholar
  14. 14.
    Glerup, M., Castignolles, M., Holzinger, M., et al., Chem. Commun., 2003, vol. 20, pp. 2542–2543.CrossRefGoogle Scholar
  15. 15.
    Luo, Z., Lim, S., Tian, Z., et al., J. Mater. Chem., 2011, vol. 21, pp. 8038–8044.CrossRefGoogle Scholar
  16. 16.
    Teddy, J., Ph.D. Thesis, Toulouse University, Toulouse, 2009, pp. 1–113.Google Scholar
  17. 17.
    Panchakarla, L.S., Subrahmanyam, K.S., Saha, S.K., et al., Adv. Mater., 2009, vol. 21, no. 46, pp. 4726–4730.Google Scholar
  18. 18.
    Winkler, J.K., Karow, W., and Rademacher, P., Arkivoc, 2000, pp. 576–602.Google Scholar
  19. 19.
    Mackie, J.C. Colket, M.B., and Nelson, P.F., J. Phys. Chem.,1990, vol.94, no. 10, pp. 4099–4106.CrossRefGoogle Scholar
  20. 20.
    Ninomiya, Y., Dong, Z., Suzuki, Y., and Koketsu, J., Fuel, 2000, vol. 79, no. 2, pp. 449–457.CrossRefGoogle Scholar
  21. 21.
    Tobe, Y., Nakanishi, H., Sonoda, M., et al., Chem. Commun., 1999, no. 17, pp. 1625–1626.Google Scholar
  22. 22.
    Kharlamov, A.I. and Kirillova, N.V., Dopovidi Nats. Akad. Nauk Ukraïni, 2009, no. 5, pp. 115–122.Google Scholar
  23. 23.
    Kharlamov, A.I., Bondarenko, M.E., and Kirillova, N.V., Zh. Prikl. Khim., 2012, vol. 85, no. 2, pp. 244–249.Google Scholar
  24. 24.
    Kharlamov, A., Kharlamova, G., Khyzhun, O., and Kirillova, N., Carbon Nanomaterials in Clean-Energy Hydrogen Systems, Zaginaichenko, S., Schur, D., Skorokhod, V., et al., Eds., Springer, Dordrecht, The Netherlands, 2011, pp. 257–268.Google Scholar
  25. 25.
    Kharlamov, A.I. and Kirillova, N.V., Dopovidi Nats. Akad. Nauk Ukraïni, 2011, no. 6, pp. 156–163.Google Scholar
  26. 26.
    Kharlamov, O., Kharlamova, G., Kirillova, N., et al., Technological Innovations in Sensing and Detection of Chemical, Biological, Radiological, Nuclear Threats and Ecological Terrorism, NATO Science for Peace and Security Series, Vaseashta, A. et al., Eds., A: Chemistry and Biology, Springer Science+Business Media B.V., 2012, pp. 245–253.Google Scholar
  27. 27.
    Jones, R.O., J. Chem. Phys., 1999, vol. 110, no. 11, pp. 5189–5200.CrossRefGoogle Scholar
  28. 28.
    Howard, J.B., McKinnon, J.T., Makarovsky, Y., et al., Nature, 1991, vol. 352, no. 6331, pp. 139–141.CrossRefGoogle Scholar
  29. 29.
    Kong, Q., Zhao, L., Zhuang, J., et al., Int. J. Mass Spectrom., 2001, vol. 209, no. 1, pp. 69–79.CrossRefGoogle Scholar
  30. 30.
    Pradeep, T., Vijayakrishnan, V., Santra, A.K., and Rao, C.N.R., Phys. Chem., 1991, vol. 95, pp. 10564–10568.CrossRefGoogle Scholar
  31. 31.
    Hummelen, J.C., Knight, B., Pavlovich, J., et al., Science, 1995, vol. 269, no. 5230, pp. 1554–1556.CrossRefGoogle Scholar
  32. 32.
    Vaziri, M., Mater. Lett., 2006, vol. 60, no. 7, pp. 926–928.CrossRefGoogle Scholar
  33. 33.
    Nuber, B. and Hirsh, A., Chem. Commun., 1996, no. 12, pp. 1421–1442.Google Scholar
  34. 34.
    Vasil’ev, Y.V., Hirsch, A., Taylor, R., and Drewello, T., Chem. Commun., 2004, vol. 7, no. 15, pp. 1752–1753.CrossRefGoogle Scholar
  35. 35.
    Vasil’ev, Y.V., Abzalimov, R.R., Tuktarov, R.F., et al., Chem. Commun. Lett., 2002, vol. 354, nos. 5–6, pp. 361–366.Google Scholar
  36. 36.
    Keshavarz-K, M., Gonzalez, R., Hicks, R.G., et al., Nature, 1996, vol. 383, no. 6596, pp. 147–150.CrossRefGoogle Scholar
  37. 37.
    Jin, C., Hettich, R., Compton, R., et al., J. Phys. Chem., 1994, vol. 98, no. 16, pp. 4215–4217.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • A. I. Kharlamov
    • 1
  • G. A. Kharlamova
    • 2
  • M. E. Bondarenko
    • 1
  1. 1.Frantsevich Institute for Problems of Materials ScienceNational Academy of Sciences of UkraineKievUkraine
  2. 2.Taras Shevchenko National UniversityKievUkraine

Personalised recommendations