Russian Journal of Applied Chemistry

, Volume 85, Issue 10, pp 1617–1621 | Cite as

Formation of the liquid crystal state of cellulose diacetate in nitromethane vapor: A fourier IR study

  • B. I. Lirova
  • E. A. Lyutikova
Macromolecular Compounds and Polymeric Materials


The structure, intra- and intermolecular interactions, and conformations of macromolecules in cellulose diacetate films under the conditions of formation of the liquid crystal state in the course of nitromethane vapor sorption were studied by Fourier IR spectroscopy and polarization microscopy. The number of intramolecular hydrogen bonds stabilizing the rigid helical conformation of the macromolecules is preserved in the process. The anisotropic structure of cellulose diacetate films is also preserved after desorption of the sorbed solvent vapor.


Intramolecular Hydrogen Bond Anisotropic Structure Vapor Sorption Liquid Crystal Phase Pyranose Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Papkov, S.P. and Kulichikhin, V.G., Zhidkokristallicheskoe sostoyanie polimerov (Liquid Crystal State of Polymers), Moscow: Khimiya, 1977.Google Scholar
  2. 2.
    Zhbankov, R.G. and Kozlov, P.V., Fizika tsellyulozy i ee proizvodnykh (Physics of Cellulose and Its Derivatives), Minsk: Nauka i Tekhnika, 1983.Google Scholar
  3. 3.
    Shipovskaya, A.B., Phase Analysis of Cellulose Ether-Mesogenic Solvent Systems, Doctoral Dissertation, Saratov, 2009.Google Scholar
  4. 4.
    Pimentel, G.C., The Hydrogen Bond, McClellan, A.L. and Pauling, L., Eds., San Francisco: Freeman, 1960.Google Scholar
  5. 5.
    Gutmann, V., Coordination Chemistry in Non-Aqueous Solutions, Wien: Springer, 1968.CrossRefGoogle Scholar
  6. 6.
    Zhbankov, R.G., Infrakrasnye spektry i struktura uglevodov (Infrared Spectra and Structure of Carbohydrates), Minsk: Nauka i Tekhnika, 1972.Google Scholar
  7. 7.
    Bellamy, L.J., The Infra-Red Spectra of Complex Molecules, New York: Wiley, 1957.Google Scholar
  8. 8.
    Zhbankov, R.G., Infrakrasnye spektry tsellyulozy i ee proizvodnykh (Infrared Spectra of Cellulose and Its Derivatives), Minsk: Nauka i Tekhnika, 1964.Google Scholar
  9. 9.
    Kondo, T., Sawatari, C., and Sekiguchi, Y., Carbohydr. Polym., 2003, vol. 53, pp. 145–153.CrossRefGoogle Scholar
  10. 10.
    Guo, Y. and Wu, P., Carbohydr. Polym., 2008, vol. 74, pp. 509–513.CrossRefGoogle Scholar
  11. 11.
    Lirova, B.I., Lyutikova, E.A., and Shchapova, E.A., in Fiziko-khimiya polimerov: Sintez, svoistva i primenenie: Sbornik nauchnykh trudov (Physical Chemistry of Polymers: Synthesis, Properties, and Use: Coll. of Scientific Works), Tver: Tverskoi Gos. Univ., 2010, issue 16, pp. 318–323.Google Scholar
  12. 12.
    Skornyakov, I.V. and Komar, V.P., Zh. Prikl. Spektrosk., 1994, vol. 61, nos. 3–4, pp. 173–180.Google Scholar
  13. 13.
    Kratkii spravochnik fiziko-khimicheskikh velichin (Brief Handbook of Physicochemical Quantities), Mishchenko, K.P. and Ravdel’, A.A., Eds., Leningrad: Khimiya, 1972.Google Scholar
  14. 14.
    Sivchik, V.V., Zhbankov, R.G., and Kulakov, V.A., Zh. Prikl. Spektrosk., 1978, vol. 28, no. 2, pp. 314–318.Google Scholar
  15. 15.
    Shipovskaya, A.B. and Timofeeva, G.N., Vysokomol. Soedin., Ser. B, 2001, vol. 43, no. 7, pp. 1237–1244.Google Scholar
  16. 16.
    Kulichikhin, V.G. and Golova, L.K., Khim. Drev., 1985, no. 3, pp. 9–27.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Yeltsin Ural Federal UniversityYekaterinburgRussia

Personalised recommendations